1. Асимптотические методы решения линейных и нелинейных уравнений математической физики.
2. Квазиклассическое квантование неинтегрируемых гамильтоновых систем.
3. Асимптотические методы финансовой математики.
4. Уравнения реакции диффузии.
Основные публикации:
Lisok A.L., Shapovalov A.V. and Trifonov A.Yu., “Symmetry and Intertwining Operators for the Nonlocal Gross–Pitaevskii Equation”, Sym., Integ. and Geom.: Meth. and Appl., 9 (2013), 066, 1–21
Белов В.В., Литвинец Ф.Н., Трифонов А.Ю., “Квазиклассические спектральные серии оператора типа Хартри, отвечающие точке покоя классической системы Гамильтона–Эренфеста”, ТМФ, 150:1 (2007), 26–40
Belov V.V., Trifonov A.Yu. and Shapovalov A.V., “The trajectory-coherent approximation and the system of moments for the Hartree type equation”, Int. J. of Math. and Math. Scien., 32:6 (2002), 325–370
Bagrov V.G., Belov V.V., Trifonov A.Yu., “Semiclassical trajectory-coherent approximation in quantum mechanics: I. High order corrections to multidimensional time-dependent equations of Schrodinger type”, Ann. of Phys. (N.Y.), 246:2 (1996), 231–290
Bagrov V.G., Belov V.V., Yevseyevich A.A., Trifonov A.Yu., “Quasiclassical spectral series of the Dirac operators corresponding to quantized two-dimensional Lagrangian tori”, J. Phys. A: Math. Gen., 27:15 (1994), 5273–5306
Е. А. Левченко, А. Ю. Трифонов, А. В. Шаповалов, “Квазиклассическое приближение для многомерного нелокального уравнения Фишера-Колмогорова-Петровского-Пискунова”, Компьютерные исследования и моделирование, 7:2 (2015), 205–219
2013
2.
Е. А. Левченко, А. Ю. Трифонов, А. В. Шаповалов, “Асимптотические решения нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова на больших временах”, Компьютерные исследования и моделирование, 5:4 (2013), 543–558
Aleksandr L. Lisok, Aleksandr V. Shapovalov, Andrey Yu. Trifonov, “Symmetry and Intertwining Operators for the Nonlocal Gross–Pitaevskii Equation”, SIGMA, 9 (2013), 066, 21 стр.
А. В. Борисов, А. Ю. Трифонов, А. В. Шаповалов, “Влияние конвекции на двумерную динамику в нелокальной реакционно-диффузионной модели”, Компьютерные исследования и моделирование, 3:1 (2011), 55–61
2010
5.
Р. О. Резаев, А. Ю. Трифонов, А. В. Шаповалов, “Система Эйнштейна–Эренфеста типа $(0,M)$ и асимптотические решения многомерного нелинейного уравнения Фоккера–Планка–Колмогорова”, Компьютерные исследования и моделирование, 2:2 (2010), 151–160
6.
А. В. Борисов, А. Ю. Трифонов, А. В. Шаповалов, “Численное моделирование популяционной 2D-динамики с нелокальным взаимодействием”, Компьютерные исследования и моделирование, 2:1 (2010), 33–40
А. В. Борисов, А. Ю. Трифонов, А. В. Шаповалов, “Квазиклассические решения уравнения Гросса-Питаевского, локализованные в окрестности окружности”, Компьютерные исследования и моделирование, 1:4 (2009), 359–365
8.
А. В. Шаповалов, А. Ю. Трифонов, Е. А. Масалова, “Квазиклассические асимптотики нелинейного уравнения Фоккера–Планка для распределений доходностей активов”, Компьютерные исследования и моделирование, 1:1 (2009), 41–49
Alexander V. Shapovalov, Roman O. Rezaev, Andrey Yu. Trifonov, “Symmetry Operators for the Fokker–Plank–Kolmogorov Equation with Nonlocal Quadratic Nonlinearity”, SIGMA, 3 (2007), 005, 16 стр.
В. В. Белов, Ф. Н. Литвинец, А. Ю. Трифонов, “Квазиклассические спектральные серии оператора типа Хартри, отвечающие точке покоя классической системы Гамильтона–Эренфеста”, ТМФ, 150:1 (2007), 26–40; V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding
to a rest point of the classical Hamilton–Ehrenfest system”, Theoret. and Math. Phys., 150:1 (2007), 21–33
Alexander Shapovalov, Andrey Trifonov, Alexander Lisok, “Exact Solutions and Symmetry Operators for the Nonlocal Gross–Pitaevskii Equation with Quadratic Potential”, SIGMA, 1 (2005), 007, 14 стр.
А. Л. Лисок, А. Ю. Трифонов, А. В. Шаповалов, “Операторы симметрии уравнения типа Хартри с квадратичным потенциалом”, Сиб. матем. журн., 46:1 (2005), 149–165; A. L. Lisok, A. Yu. Trifonov, A. V. Shapovalov, “Symmetry operators of a Hartree-type equation with quadratic potential”, Siberian Math. J., 46:1 (2005), 119–132
А. Л. Лисок, А. Ю. Трифонов, А. В. Шаповалов, “Функция Грина уравнения типа уравнения Хартри с квадратичным потенциалом”, ТМФ, 141:2 (2004), 228–242; A. L. Lisok, A. Yu. Trifonov, A. V. Shapovalov, “Green's Function of a Hartree-Type Equation with a Quadratic Potential”, Theoret. and Math. Phys., 141:2 (2004), 1528–1541
В. В. Белов, А. Ю. Трифонов, А. В. Шаповалов, “Квазиклассическое траекторно-когерентное приближение для уравнения типа Хартри”, ТМФ, 130:3 (2002), 460–492; V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, “Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations”, Theoret. and Math. Phys., 130:3 (2002), 391–418