|
Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)
Exact Solutions and Symmetry Operators for the Nonlocal Gross–Pitaevskii Equation with Quadratic Potential
Alexander Shapovalovabc, Andrey Trifonovac, Alexander Lisoka a Math. Phys. Laboratory, Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia
b Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
c Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia
Аннотация:
The complex WKB–Maslov method is used to consider an approach to the semiclassical integrability of the multidimensional Gross–Pitaevskii equation with an external field and nonlocal nonlinearity previously developed by the authors. Although the WKB–Maslov method is approximate in essence, it leads to exact solution of the Gross–Pitaevskii equation with an external and a nonlocal quadratic potential. For this equation, an exact solution of the Cauchy problem is constructed in the class of trajectory concentrated functions. A nonlinear evolution operator is found in explicit form and symmetry operators (mapping a solution of the equation into another solution) are obtained for the equation under consideration. General constructions are illustrated by examples.
Ключевые слова:
WKB–Maslov complex germ method; semiclassical asymptotics; Gross–Pitaevskii equation; the Cauchy problem; nonlinear evolution operator; trajectory concentrated functions; symmetry operators.
Поступила: 27 июля 2005 г.; в окончательном варианте 6 октября 2005 г.; опубликована 17 октября 2005 г.
Образец цитирования:
Alexander Shapovalov, Andrey Trifonov, Alexander Lisok, “Exact Solutions and Symmetry Operators for the Nonlocal Gross–Pitaevskii Equation with Quadratic Potential”, SIGMA, 1 (2005), 007, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma7 https://www.mathnet.ru/rus/sigma/v1/p7
|
Статистика просмотров: |
Страница аннотации: | 512 | PDF полного текста: | 74 | Список литературы: | 85 |
|