|
|
Publications in Math-Net.Ru |
Citations |
|
2020 |
1. |
V. S. Matveev, “Quantum integrability for the Beltrami–Laplace operators of projectively equivalent metrics of arbitrary signatures”, Chebyshevskii Sb., 21:2 (2020), 275–289 |
1
|
|
2015 |
2. |
V. S. Matveev, “On the number of nontrivial projective transformations of closed manifolds”, Fundam. Prikl. Mat., 20:2 (2015), 125–131 ; J. Math. Sci., 223:6 (2017), 734–738 |
4
|
|
2012 |
3. |
Vladimir S. Matveev, “On the dimension of the group of projective transformations of closed randers and Riemannian manifolds”, SIGMA, 8 (2012), 007, 4 pp. |
1
|
|
2010 |
4. |
V. A. Kiosak, V. S. Matveev, J. Mikesh, I. G. Shandra, “On the Degree of Geodesic Mobility for Riemannian Metrics”, Mat. Zametki, 87:4 (2010), 628–629 ; Math. Notes, 87:4 (2010), 586–587 |
22
|
|
2005 |
5. |
V. S. Matveev, “The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered”, Mat. Zametki, 77:3 (2005), 412–423 ; Math. Notes, 77:3 (2005), 380–390 |
7
|
|
2000 |
6. |
V. S. Matveev, P. J. Topalov, “Geodesic equivalence of metrics as a particular case of integrability of geodesic flows”, TMF, 123:2 (2000), 285–293 ; Theoret. and Math. Phys., 123:2 (2000), 651–658 |
4
|
7. |
V. S. Matveev, P. J. Topalov, “Dynamical and Topological Methods in Theory of Geodesically Equivalent Metrics”, Zap. Nauchn. Sem. POMI, 266 (2000), 155–168 ; J. Math. Sci. (N. Y.), 113:4 (2003), 629–636 |
3
|
|
1999 |
8. |
H. R. Dullin, V. S. Matveev, P. Ĭ. Topalov, “On Integrals of the Third Degree in Momenta”, Regul. Chaotic Dyn., 4:3 (1999), 35–44 |
6
|
9. |
V. S. Matveev, A. A. Oshemkov, “Algorithmic classification of invariant neighborhoods of points of saddle-saddle type”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 2, 62–65 |
2
|
|
1998 |
10. |
V. S. Matveev, “The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities”, Mat. Zametki, 64:3 (1998), 414–422 ; Math. Notes, 64:3 (1998), 357–363 |
11
|
11. |
V. S. Matveev, P. Ĭ. Topalov, “Geodesical equivalence and the Liouville integration of the geodesic flows”, Regul. Chaotic Dyn., 3:2 (1998), 30–45 |
49
|
12. |
A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Mat. Sb., 189:10 (1998), 5–32 ; Sb. Math., 189:10 (1998), 1441–1466 |
60
|
13. |
V. S. Matveev, P. Topalov, “A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5, 53–55 |
14. |
V. S. Matveev, P. Topalov, “Conjugate points of hyperbolic geodesics of square integrable geodesic flows on closed surfaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 1, 60–62 |
|
1997 |
15. |
V. S. Matveev, “Geodesic Flows on the Klein Bottle, Integrable by Polynomials in Momenta of Degree Four”, Regul. Chaotic Dyn., 2:2 (1997), 106–112 |
1
|
16. |
V. S. Matveev, P. J. Topalov, “Jacobi Vector Fields of Integrable Geodesic Flows”, Regul. Chaotic Dyn., 2:1 (1997), 103–116 |
17. |
V. S. Matveev, “Quadratically Integrable Geodesic Flows on the Torus and on the Klein Bottle”, Regul. Chaotic Dyn., 2:1 (1997), 96–102 |
3
|
18. |
V. S. Matveev, “An example of a geodesic flow on the Klein bottle, integrable by a polynomial in the momentum of the fourth degree”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 4, 47–48 |
2
|
|
1996 |
19. |
V. S. Matveev, “Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type”, Mat. Sb., 187:4 (1996), 29–58 ; Sb. Math., 187:4 (1996), 495–524 |
59
|
20. |
A. V. Bolsinov, V. S. Matveev, “Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom”, Zap. Nauchn. Sem. POMI, 235 (1996), 54–86 ; J. Math. Sci. (New York), 94:4 (1999), 1477–1500 |
4
|
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|