Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Matveev, Vladimir Sergeevich

Statistics Math-Net.Ru
Total publications: 20
Scientific articles: 20
Presentations: 1

Number of views:
This page:3677
Abstract pages:5247
Full texts:2119
References:643
Professor
Candidate of physico-mathematical sciences (1996)
Speciality: 01.01.04 (Geometry and topology)
Birth date: 25.04.1971
E-mail: ,
Website: http://users.minet.uni-jena.de/~matveev/
Keywords: integrable systems.
UDC: 513.83, 514.7, 519.946

Subject:

Differential geometry.

   
Main publications:
  1. Vladimir S. Matveev, “Proof of the projective Lichnerowicz–Obata conjecture”, J. Differential Geom., 75 (2007), 459–502  mathscinet  zmath

https://www.mathnet.ru/eng/person8426
List of publications on Google Scholar
https://zbmath.org/authors/ai:matveev.vladimir-s
https://mathscinet.ams.org/mathscinet/MRAuthorID/609466
ISTINA https://istina.msu.ru/workers/1617196
Full list of publications: http://www.minet.uni-jena.de/~matveev/Forschung/publications.html

Publications in Math-Net.Ru Citations
2020
1. V. S. Matveev, “Quantum integrability for the Beltrami–Laplace operators of projectively equivalent metrics of arbitrary signatures”, Chebyshevskii Sb., 21:2 (2020),  275–289  mathnet 1
2015
2. V. S. Matveev, “On the number of nontrivial projective transformations of closed manifolds”, Fundam. Prikl. Mat., 20:2 (2015),  125–131  mathnet  mathscinet  elib; J. Math. Sci., 223:6 (2017), 734–738 4
2012
3. Vladimir S. Matveev, “On the dimension of the group of projective transformations of closed randers and Riemannian manifolds”, SIGMA, 8 (2012), 007, 4 pp.  mathnet  mathscinet  isi  scopus 1
2010
4. V. A. Kiosak, V. S. Matveev, J. Mikesh, I. G. Shandra, “On the Degree of Geodesic Mobility for Riemannian Metrics”, Mat. Zametki, 87:4 (2010),  628–629  mathnet  mathscinet  zmath; Math. Notes, 87:4 (2010), 586–587  isi  scopus 22
2005
5. V. S. Matveev, “The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered”, Mat. Zametki, 77:3 (2005),  412–423  mathnet  mathscinet  zmath  elib; Math. Notes, 77:3 (2005), 380–390  isi  scopus 7
2000
6. V. S. Matveev, P. J. Topalov, “Geodesic equivalence of metrics as a particular case of integrability of geodesic flows”, TMF, 123:2 (2000),  285–293  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 123:2 (2000), 651–658  isi 4
7. V. S. Matveev, P. J. Topalov, “Dynamical and Topological Methods in Theory of Geodesically Equivalent Metrics”, Zap. Nauchn. Sem. POMI, 266 (2000),  155–168  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 113:4 (2003), 629–636 3
1999
8. H. R. Dullin, V. S. Matveev, P. Ĭ. Topalov, “On Integrals of the Third Degree in Momenta”, Regul. Chaotic Dyn., 4:3 (1999),  35–44  mathnet  mathscinet  zmath 6
9. V. S. Matveev, A. A. Oshemkov, “Algorithmic classification of invariant neighborhoods of points of saddle-saddle type”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 2,  62–65  mathnet  mathscinet  zmath 2
1998
10. V. S. Matveev, “The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities”, Mat. Zametki, 64:3 (1998),  414–422  mathnet  mathscinet  zmath; Math. Notes, 64:3 (1998), 357–363  isi 11
11. V. S. Matveev, P. Ĭ. Topalov, “Geodesical equivalence and the Liouville integration of the geodesic flows”, Regul. Chaotic Dyn., 3:2 (1998),  30–45  mathnet  mathscinet  zmath 49
12. A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Mat. Sb., 189:10 (1998),  5–32  mathnet  mathscinet  zmath; Sb. Math., 189:10 (1998), 1441–1466  isi  scopus 60
13. V. S. Matveev, P. Topalov, “A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5,  53–55  mathnet  mathscinet  zmath
14. V. S. Matveev, P. Topalov, “Conjugate points of hyperbolic geodesics of square integrable geodesic flows on closed surfaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 1,  60–62  mathnet  zmath
1997
15. V. S. Matveev, “Geodesic Flows on the Klein Bottle, Integrable by Polynomials in Momenta of Degree Four”, Regul. Chaotic Dyn., 2:2 (1997),  106–112  mathnet  mathscinet  zmath 1
16. V. S. Matveev, P. J. Topalov, “Jacobi Vector Fields of Integrable Geodesic Flows”, Regul. Chaotic Dyn., 2:1 (1997),  103–116  mathnet  mathscinet  zmath
17. V. S. Matveev, “Quadratically Integrable Geodesic Flows on the Torus and on the Klein Bottle”, Regul. Chaotic Dyn., 2:1 (1997),  96–102  mathnet  mathscinet  zmath 3
18. V. S. Matveev, “An example of a geodesic flow on the Klein bottle, integrable by a polynomial in the momentum of the fourth degree”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 4,  47–48  mathnet  mathscinet  zmath 2
1996
19. V. S. Matveev, “Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type”, Mat. Sb., 187:4 (1996),  29–58  mathnet  mathscinet  zmath; Sb. Math., 187:4 (1996), 495–524  isi  scopus 59
20. A. V. Bolsinov, V. S. Matveev, “Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom”, Zap. Nauchn. Sem. POMI, 235 (1996),  54–86  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 94:4 (1999), 1477–1500 4

Presentations in Math-Net.Ru
1. Геометрия Нийенхейса: особенности и глобальные аспекты
V. S. Matveev
Modern geometry methods
September 23, 2020 18:30

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024