Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 123, Number 2, Pages 285–293
DOI: https://doi.org/10.4213/tmf602
(Mi tmf602)
 

This article is cited in 5 scientific papers (total in 5 papers)

Geodesic equivalence of metrics as a particular case of integrability of geodesic flows

V. S. Matveeva, P. J. Topalovb

a Chelyabinsk State University
b Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
Full-text PDF (223 kB) Citations (5)
References:
Abstract: We consider the recently found connection between geodesically equivalent metrics and integrable geodesic flows. If two different metrics on a manifold have the same geodesics, then the geodesic flows of these metrics admit sufficiently many integrals (of a special form) in involution, and vice versa. The quantum version of this result is also true: if two metrics on one manifold have the same geodesics, then the Beltrami–Laplace operator Δ for each metric admits sufficiently many linear differential operators commuting with Δ. This implies that the topology of a manifold with two different metrics with the same geodesics must be sufficiently simple. We also have that the nonproportionality of the metrics at a point implies the nonproportionality of the metrics at almost all points.
English version:
Theoretical and Mathematical Physics, 2000, Volume 123, Issue 2, Pages 651–658
DOI: https://doi.org/10.1007/BF02551397
Bibliographic databases:
Language: Russian
Citation: V. S. Matveev, P. J. Topalov, “Geodesic equivalence of metrics as a particular case of integrability of geodesic flows”, TMF, 123:2 (2000), 285–293; Theoret. and Math. Phys., 123:2 (2000), 651–658
Citation in format AMSBIB
\Bibitem{MatTop00}
\by V.~S.~Matveev, P.~J.~Topalov
\paper Geodesic equivalence of metrics as a particular case of integrability of geodesic flows
\jour TMF
\yr 2000
\vol 123
\issue 2
\pages 285--293
\mathnet{http://mi.mathnet.ru/tmf602}
\crossref{https://doi.org/10.4213/tmf602}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794160}
\zmath{https://zbmath.org/?q=an:0996.53054}
\elib{https://elibrary.ru/item.asp?id=13340359}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 2
\pages 651--658
\crossref{https://doi.org/10.1007/BF02551397}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165897000008}
Linking options:
  • https://www.mathnet.ru/eng/tmf602
  • https://doi.org/10.4213/tmf602
  • https://www.mathnet.ru/eng/tmf/v123/i2/p285
  • This publication is cited in the following 5 articles:
    1. S. V. Agapov, A. E. Mironov, “Finite-Gap Potentials and Integrable Geodesic Equations on a 2-Surface”, Proc. Steklov Inst. Math., 327 (2024), 1–11  mathnet  crossref  crossref
    2. Josef Mikeš et al., Differential Geometry of Special Mappings, 2019  crossref
    3. Josef Mikeš et al., Differential Geometry of Special Mappings, 2019  crossref
    4. Mikes J., Stepanova E., Vanzurova A., “Differential Geometry of Special Mappings”, Differential Geometry of Special Mappings, Palacky Univ, 2015, 1–566  mathscinet  isi
    5. S. L. Tabachnikov, “Ellipsoids, complete integrability and hyperbolic geometry”, Mosc. Math. J., 2:1 (2002), 183–196  mathnet  crossref  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:451
    Full-text PDF :250
    References:91
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025