Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 007, 4 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.007
(Mi sigma684)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the dimension of the group of projective transformations of closed randers and Riemannian manifolds

Vladimir S. Matveev

Institute of Mathematics, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany
Full-text PDF (257 kB) Citations (1)
References:
Abstract: We construct a counterexample to Theorem 2 of [Rafie-Rad M., Rezaei B., SIGMA 7 (2011), 085, 12 pages].
Keywords: Finsler metrics, Randers metrics, projective transformations.
Received: January 18, 2012; in final form February 21, 2012; Published online February 23, 2012
Bibliographic databases:
Document Type: Article
MSC: 53C60; 53B40; 53A20
Language: English
Citation: Vladimir S. Matveev, “On the dimension of the group of projective transformations of closed randers and Riemannian manifolds”, SIGMA, 8 (2012), 007, 4 pp.
Citation in format AMSBIB
\Bibitem{Mat12}
\by Vladimir S. Matveev
\paper On the dimension of the group of projective transformations of closed randers and Riemannian manifolds
\jour SIGMA
\yr 2012
\vol 8
\papernumber 007
\totalpages 4
\mathnet{http://mi.mathnet.ru/sigma684}
\crossref{https://doi.org/10.3842/SIGMA.2012.007}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2900508}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000301230200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858978131}
Linking options:
  • https://www.mathnet.ru/eng/sigma684
  • https://www.mathnet.ru/eng/sigma/v8/p7
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025