Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1999, Volume 4, Issue 3, Pages 35–44
DOI: https://doi.org/10.1070/RD1999v004n03ABEH000114
(Mi rcd910)
 

This article is cited in 6 scientific papers (total in 6 papers)

On Integrals of the Third Degree in Momenta

H. R. Dullina, V. S. Matveevb, P. Ĭ. Topalovc

a Department of Applied Mathematics, University of Colorado
b Institut f. Theoretische Physik, Universität Bremen
c Institute of Mathematics and Informatics, BAS, Acad. G. Bonchev Str., bl. 8, Soa, 1113, Bulgaria
Citations (6)
Abstract: Consider a Riemannian metric on a surface, and let the geodesic flow of the metric have a second integral that is a third degree polynomial in momenta. Then we can naturally construct a vector field on the surface. We show that the vector field preserves the volume of the surface, and therefore is a Hamiltonian vector field. As examples we treat the Goryachev–Chaplygin top, the Toda lattice and the Calogero–Moser system, and construct their global Hamiltonians. We show that the simpliest choice of Hamiltonian leads to the Toda lattice.
Received: 31.08.1998
Bibliographic databases:
Document Type: Article
MSC: 58F, 70H
Language: English
Citation: H. R. Dullin, V. S. Matveev, P. Ĭ. Topalov, “On Integrals of the Third Degree in Momenta”, Regul. Chaotic Dyn., 4:3 (1999), 35–44
Citation in format AMSBIB
\Bibitem{DulMatTop99}
\by H. R. Dullin, V. S. Matveev, P. {\u I}. Topalov
\paper On Integrals of the Third Degree in Momenta
\jour Regul. Chaotic Dyn.
\yr 1999
\vol 4
\issue 3
\pages 35--44
\mathnet{http://mi.mathnet.ru/rcd910}
\crossref{https://doi.org/10.1070/RD1999v004n03ABEH000114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1777878}
\zmath{https://zbmath.org/?q=an:1012.37036}
Linking options:
  • https://www.mathnet.ru/eng/rcd910
  • https://www.mathnet.ru/eng/rcd/v4/i3/p35
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024