Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 3, Pages 414–422
DOI: https://doi.org/10.4213/mzm1412
(Mi mzm1412)
 

This article is cited in 12 scientific papers (total in 12 papers)

The asymptotic eigenfunctions of the operator D(x,y) corresponding to Liouville metrics and waves on water captured by bottom irregularities

V. S. Matveev

Chelyabinsk State University
References:
Abstract: We construct a set of examples of bottom reliefs for which there exist captured waves corresponding to quasimodes of the wave operator D(x,y).
Received: 01.04.1997
English version:
Mathematical Notes, 1998, Volume 64, Issue 3, Pages 357–363
DOI: https://doi.org/10.1007/BF02314845
Bibliographic databases:
UDC: 551.46+514.17+517.9
Language: Russian
Citation: V. S. Matveev, “The asymptotic eigenfunctions of the operator D(x,y) corresponding to Liouville metrics and waves on water captured by bottom irregularities”, Mat. Zametki, 64:3 (1998), 414–422; Math. Notes, 64:3 (1998), 357–363
Citation in format AMSBIB
\Bibitem{Mat98}
\by V.~S.~Matveev
\paper The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 3
\pages 414--422
\mathnet{http://mi.mathnet.ru/mzm1412}
\crossref{https://doi.org/10.4213/mzm1412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680205}
\zmath{https://zbmath.org/?q=an:0926.35103}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 3
\pages 357--363
\crossref{https://doi.org/10.1007/BF02314845}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079258700010}
Linking options:
  • https://www.mathnet.ru/eng/mzm1412
  • https://doi.org/10.4213/mzm1412
  • https://www.mathnet.ru/eng/mzm/v64/i3/p414
  • This publication is cited in the following 12 articles:
    1. Vladislav Rykhlov, Anatoly Anikin, “High-frequency two-dimensional asymptotic standing coastal trapped waves in nearly integrable case”, Lett Math Phys, 115:1 (2025)  crossref
    2. A.I. Klevin, A.V. Tsvetkova, “Nonlinear Long Standing Waves with Support Bounded by Caustics or Localized in the Vicinity of a Two-Link Trajectory”, Russ. J. Math. Phys., 30:4 (2023), 543  crossref
    3. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Nonstandard Liouville tori and caustics in asymptotics in the form of Airy and Bessel functions for two-dimensional standing coastal waves”, St. Petersburg Math. J., 33:2 (2022), 185–205  mathnet  crossref
    4. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Asymptotics, Related to Billiards with Semi-Rigid Walls, of Eigenfunctions of the D(x) Operator in Dimension 2 and Trapped Coastal Waves”, Math. Notes, 105:5 (2019), 789–794  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Anikin A.Yu. Dobrokhotov S.Yu. Nazaikinskii V.E. Tsvetkova A.V., “Asymptotic Eigenfunctions of the Operator Delta D(X)Delta Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards With Semi-Rigid Walls”, Differ. Equ., 55:5 (2019), 644–657  crossref  isi
    6. Dobrokhotov S.Yu. Nazaikinskii V.E., “Asymptotic Localized Solutions of the Shallow Water Equations Over a Nonuniform Bottom”, AIP Conference Proceedings, 2048, ed. Pasheva V. Popivanov N. Venkov G., Amer Inst Physics, 2018, 040026  crossref  isi
    7. Mikes J. Stepanova E. Vanzurova A., “Differential Geometry of Special Mappings”, Differential Geometry of Special Mappings, Palacky Univ, 2015, 1–566  mathscinet  isi
    8. Dobrokhotov S.Yu. Lozhnikov D.A. Vargas C.A., “Asymptotics of Waves on the Shallow Water Generated by Spatially-Localized Sources and Trapped by Underwater Ridges”, Russ. J. Math. Phys., 20:1 (2013), 11–24  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    9. Dobrokhotov S.Yu. Lozhnikov D.A. Nazaikinskii V.E., “Wave Trains Associated with a Cascade of Bifurcations of Space-Time Caustics Over Elongated Underwater Banks”, Math. Model. Nat. Phenom., 8:5 (2013), 1–12  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Matveev V.S., “Pseudo-Riemannian Metrics on Closed Surfaces Whose Geodesic Flows Admit Nontrivial Integrals Quadratic in Momenta, and Proof of the Projective Obata Conjecture for Two-Dimensional Pseudo-Riemannian Metrics”, J. Math. Soc. Jpn., 64:1 (2012), 107–152  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Dobrokhotov S. Rouleux M., “The Semi-Classical Maupertuis-Jacobi Correspondence for Quasi-Periodic Hamiltonian Flows with Applications to Linear Water Waves Theory”, Asymptotic Anal., 74:1-2 (2011), 33–73  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    12. S. Yu. Dobrokhotov, M. Rouleux, “The Semiclassical Maupertuis–Jacobi Correspondence and Applications to Linear Water Waves Theory”, Math. Notes, 87:3 (2010), 430–435  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:578
    Full-text PDF :160
    References:102
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025