|
|
Publications in Math-Net.Ru |
Citations |
|
2019 |
1. |
Alexey Bolsinov, Jinrong Bao, “A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras”, Regul. Chaotic Dyn., 24:3 (2019), 266–280 |
5
|
|
2016 |
2. |
Alexey V. Bolsinov, “Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko–Fomenko conjecture”, Theor. Appl. Mech., 43:2 (2016), 145–168 |
4
|
|
2015 |
3. |
A. V. Bolsinov, “Argument shift method and sectional operators: applications to differential geometry”, Fundam. Prikl. Mat., 20:3 (2015), 5–31 ; J. Math. Sci., 225:4 (2017), 536–554 |
3
|
4. |
A. V. Bolsinov, A. A. Kilin, A. O. Kazakov, “Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra?”, J. Geom. Phys., 87 (2015), 61–75 |
8
|
5. |
I. A. Bizyaev, A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Topology and bifurcations in nonholonomic mechanics”, Nelin. Dinam., 11:4 (2015), 735–762 ; International Journal of Bifurcation and Chaos, 25:10 (2015), 15300–21 |
12
|
6. |
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 28:7 (2015), 2307–2318 |
25
|
|
2013 |
7. |
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Geometrization of the Chaplygin reducing-multiplier theorem”, Nelin. Dinam., 9:4 (2013), 627–640 |
3
|
8. |
Alexey V. Bolsinov, Alexander A. Kilin, Alexey O. Kazakov, “Topological monodromy in nonholonomic systems”, Nelin. Dinam., 9:2 (2013), 203–227 |
2
|
|
2012 |
9. |
Alexey V. Bolsinov, Alexey V. Borisov, Ivan S. Mamaev, “Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals”, Nelin. Dinam., 8:3 (2012), 605–616 |
9
|
10. |
Alexey V. Bolsinov, Alexey V. Borisov, Ivan S. Mamaev, “Rolling of a Ball without Spinning on a Plane: the Absence of an Invariant Measure in a System with a Complete Set of Integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579 |
38
|
11. |
Alexey V. Bolsinov, Alexey V. Borisov, Ivan S. Mamaev, “The Bifurcation Analysis and the Conley Index in Mechanics”, Regul. Chaotic Dyn., 17:5 (2012), 451–478 |
20
|
|
2011 |
12. |
A. V. Bolsinov, A. Yu. Konyaev, “Алгебраические и геометрические свойства квадратичных гамильтонианов, задаваемых секционными операторами”, Mat. Zametki, 90:5 (2011), 689–702 ; Math. Notes, 90:5 (2011), 666–677 |
3
|
13. |
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “The bifurcation analysis and the Conley index in mechanics”, Nelin. Dinam., 7:3 (2011), 649–681 |
3
|
14. |
A.V. Bolsinov, A.V. Borisov, I. S. Mamaev, “Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 |
57
|
|
2010 |
15. |
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds”, Nelin. Dinam., 6:4 (2010), 829–854 |
12
|
16. |
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Topology and stability of integrable systems”, Uspekhi Mat. Nauk, 65:2(392) (2010), 71–132 ; Russian Math. Surveys, 65:2 (2010), 259–318 |
107
|
|
2009 |
17. |
A. V. Bolsinov, K. M. Zuev, “A Formal Frobenius Theorem and Argument Shift”, Mat. Zametki, 86:1 (2009), 3–13 ; Math. Notes, 86:1 (2009), 10–18 |
6
|
|
2002 |
18. |
A. V. Bolsinov, A. V. Borisov, “Compatible Poisson Brackets on Lie Algebras”, Mat. Zametki, 72:1 (2002), 11–34 ; Math. Notes, 72:1 (2002), 10–30 |
58
|
|
2001 |
19. |
A. V. Bolsinov, B. Jovanović, “Integrable geodesic flows on homogeneous spaces”, Mat. Sb., 192:7 (2001), 21–40 ; Sb. Math., 192:7 (2001), 951–968 |
21
|
|
2000 |
20. |
A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Mat. Sb., 191:2 (2000), 3–42 ; Sb. Math., 191:2 (2000), 151–188 |
66
|
21. |
A. V. Bolsinov, I. A. Taimanov, “Integrable Geodesic Flows on the Suspensions of Toric Automorphisms”, Trudy Mat. Inst. Steklova, 231 (2000), 46–63 ; Proc. Steklov Inst. Math., 231 (2000), 42–58 |
17
|
|
1999 |
22. |
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Lie algebras in vortex dynamics and celestial mechanics — IV”, Regul. Chaotic Dyn., 4:1 (1999), 23–50 |
25
|
23. |
A. V. Bolsinov, I. A. Taimanov, “On an example of an integrable geodesic flow with positive topological entropy”, Uspekhi Mat. Nauk, 54:4(328) (1999), 157–158 ; Russian Math. Surveys, 54:4 (1999), 833–834 |
12
|
|
1998 |
24. |
A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Mat. Sb., 189:10 (1998), 5–32 ; Sb. Math., 189:10 (1998), 1441–1466 |
60
|
|
1997 |
25. |
A. V. Bolsinov, Holger Dullin, “On Euler Case in Rigid Body Dynamics and Jacobi Problem”, Regul. Chaotic Dyn., 2:1 (1997), 13–25 |
1
|
26. |
A. V. Bolsinov, “Fomenko invariants in the theory of integrable Hamiltonian systems”, Uspekhi Mat. Nauk, 52:5(317) (1997), 113–132 ; Russian Math. Surveys, 52:5 (1997), 997–1015 |
5
|
27. |
A. V. Bolsinov, A. T. Fomenko, “On the dimension of the space of integrable Hamiltonian systems with two degrees of freedom”, Trudy Mat. Inst. Steklova, 216 (1997), 45–69 ; Proc. Steklov Inst. Math., 216 (1997), 38–62 |
3
|
|
1996 |
28. |
A. V. Bolsinov, V. S. Matveev, “Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom”, Zap. Nauchn. Sem. POMI, 235 (1996), 54–86 ; J. Math. Sci. (New York), 94:4 (1999), 1477–1500 |
4
|
29. |
A. V. Bolsinov, A. T. Fomenko, “Exact topological classification of Hamiltonian flows on smooth two-dimensional surfaces”, Zap. Nauchn. Sem. POMI, 235 (1996), 22–53 ; J. Math. Sci. (New York), 94:4 (1999), 1457–1476 |
2
|
|
1995 |
30. |
A. V. Bolsinov, A. T. Fomenko, “Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent
to the Integrable Euler Case in Rigid Body Dynamics”, Funktsional. Anal. i Prilozhen., 29:3 (1995), 1–15 ; Funct. Anal. Appl., 29:3 (1995), 149–160 |
22
|
31. |
A. V. Bolsinov, A. T. Fomenko, “Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics”, Izv. RAN. Ser. Mat., 59:1 (1995), 65–102 ; Izv. Math., 59:1 (1995), 63–100 |
6
|
32. |
A. V. Bolsinov, V. V. Kozlov, A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”, Uspekhi Mat. Nauk, 50:3(303) (1995), 3–32 ; Russian Math. Surveys, 50:3 (1995), 473–501 |
48
|
33. |
A. V. Bolsinov, A. T. Fomenko, “A criterion for the topological conjugacy of Hamiltonian flows on two-dimensional compact surfaces”, Uspekhi Mat. Nauk, 50:1(301) (1995), 189–190 ; Russian Math. Surveys, 50:1 (1995), 193–194 |
34. |
A. V. Bolsinov, “A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom”, Mat. Sb., 186:1 (1995), 3–28 ; Sb. Math., 186:1 (1995), 1–27 |
20
|
|
1994 |
35. |
A. V. Bolsinov, A. T. Fomenko, “The geodesic flow of an ellipsoid is orbitally equivalent to the
integrable Euler case in the dynamics of a rigid body”, Dokl. Akad. Nauk, 339:3 (1994), 293–296 ; Dokl. Math., 50:3 (1995), 412–417 |
9
|
36. |
A. V. Bolsinov, A. T. Fomenko, “Integrable geodesic flows on the sphere, generated by Goryachev–Chaplygin and Kowalewski systems in the dynamics of a rigid body”, Mat. Zametki, 56:2 (1994), 139–142 ; Math. Notes, 56:2 (1994), 859–861 |
13
|
37. |
A. V. Bolsinov, “The classification of Hamiltonian systems on two-dimensional surfaces”, Uspekhi Mat. Nauk, 49:6(300) (1994), 195–196 ; Russian Math. Surveys, 49:6 (1994), 199–200 |
1
|
38. |
A. V. Bolsinov, “Smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom. The case of systems with planar atoms”, Uspekhi Mat. Nauk, 49:3(297) (1994), 173–174 ; Russian Math. Surveys, 49:3 (1994), 181–182 |
2
|
39. |
A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II”, Mat. Sb., 185:5 (1994), 27–78 ; Russian Acad. Sci. Sb. Math., 82:1 (1995), 21–63 |
33
|
40. |
A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I”, Mat. Sb., 185:4 (1994), 27–80 ; Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465 |
47
|
41. |
A. V. Bolsinov, A. T. Fomenko, X. Zhang, “Three types bordisms of integrable systems with two degrees of freedom. Computation of bordism groups”, Trudy Mat. Inst. Steklov., 205 (1994), 32–72 ; Proc. Steklov Inst. Math., 205 (1995), 29–62 |
1
|
42. |
A. V. Bolsinov, A. T. Fomenko, “Unsolved problems in the theory of topological classification of integrable systems”, Trudy Mat. Inst. Steklov., 205 (1994), 18–31 ; Proc. Steklov Inst. Math., 205 (1995), 17–27 |
|
1993 |
43. |
A. V. Bolsinov, A. T. Fomenko, “Trajectory classification of simple integrable Hamiltonian systems
on three-dimensional surfaces of constant energy”, Dokl. Akad. Nauk, 332:5 (1993), 553–555 ; Dokl. Math., 48:2 (1994), 365–369 |
7
|
44. |
A. V. Bolsinov, A. T. Fomenko, “Trajectory classification of integrable systems of Euler type in the dynamics of a rigid body”, Uspekhi Mat. Nauk, 48:5(293) (1993), 163–164 ; Russian Math. Surveys, 48:5 (1993), 165–166 |
6
|
|
1992 |
45. |
A. V. Bolsinov, Yu. N. Fedorov, “Multidimensional integrable generalizations of Steklov–Lyapunov systems”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 6, 53–56 |
1
|
|
1991 |
46. |
A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Izv. Akad. Nauk SSSR Ser. Mat., 55:1 (1991), 68–92 ; Math. USSR-Izv., 38:1 (1992), 69–90 |
52
|
|
1990 |
47. |
A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Uspekhi Mat. Nauk, 45:2(272) (1990), 49–77 ; Russian Math. Surveys, 45:2 (1990), 59–94 |
93
|
|
1988 |
48. |
A. V. Bolsinov, “A criterion for the completeness of a family of functions in
involution that is constructed by the argument translation method”, Dokl. Akad. Nauk SSSR, 301:5 (1988), 1037–1040 ; Dokl. Math., 38:1 (1989), 161–165 |
9
|
|
1987 |
49. |
A. V. Bolsinov, “Involutory families of functions on dual spaces of Lie algebras of type $G\underset\varphi+ V$”, Uspekhi Mat. Nauk, 42:6(258) (1987), 183–184 ; Russian Math. Surveys, 42:6 (1987), 227–228 |
|
1986 |
50. |
A. V. Bolsinov, “Complete integrability of Euler's equations on the orbits of $\mathrm{Ad}^*$ of the groups $U(n)\underset\varphi{\times}\mathbf{C}^n$ and $U(n)\underset\psi{\times}\mathbf{C}^n$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 4, 79–81 |
|
|
|
2022 |
51. |
A. V. Bolsinov, V. M. Buchstaber, A. P. Veselov, P. G. Grinevich, I. A. Dynnikov, V. V. Kozlov, Yu. A. Kordyukov, D. V. Millionshchikov, A. E. Mironov, R. G. Novikov, S. P. Novikov, A. A. Yakovlev, “Iskander Asanovich Taimanov (on his 60th birthday)”, Uspekhi Mat. Nauk, 77:6(468) (2022), 209–218 ; Russian Math. Surveys, 77:6 (2022), 1159–1168 |
|
2021 |
52. |
A. V. Bolsinov, A. P. Veselov, Y. Ye, “Chaos and integrability in $\operatorname{SL}(2,\mathbb R)$-geometry”, Uspekhi Mat. Nauk, 76:4(460) (2021), 3–36 ; Russian Math. Surveys, 76:4 (2021), 557–586 |
3
|
|
2020 |
53. |
A. Bolsinov, N. Dobrovol'skii, A. Ivanov, E. Kudryavtseva, A. Oshemkov, F. Popelenskii, A. Tuzhilin, V. Chubarikov, A. Shafarevich, “Anatolii Timofeevich Fomenko”, Chebyshevskii Sb., 21:2 (2020), 5–7 |
|
2016 |
54. |
Alekseí V. Borisov, Alekseí V. Bolsinov, Anatolií I. Nejshtadt, Dmitrií A. Sadovskií, Boris I. Zhilinskií, “Nikolaí N. Nekhoroshev”, Regul. Chaotic Dyn., 21:6 (2016), 593–598 |
|
2009 |
55. |
A. V. Bolsinov, A. A. Oshemkov, “Bi-Hamiltonian structures and singularities of integrable systems”, Regul. Chaotic Dyn., 14:4-5 (2009), 431–454 |
29
|
56. |
A. M. Abramov, V. I. Arnol'd, A. V. Bolsinov, A. N. Varchenko, L. Galgani, B. I. Zhilinskii, Yu. S. Il'yashenko, V. V. Kozlov, A. I. Neishtadt, V. I. Piterbarg, A. G. Khovanskii, V. V. Yashchenko, “Nikolai Nikolaevich Nekhoroshev (obituary)”, Uspekhi Mat. Nauk, 64:3(387) (2009), 174–178 ; Russian Math. Surveys, 64:3 (2009), 561–566 |
3
|
|
Presentations in Math-Net.Ru |
1. |
Переменные действия и симплектические инварианты интегрируемых гамильтоновых систем A. V. Bolsinov
School of Young Mechanics and Mathematicians SYMM 2022 October 4, 2022 16:40
|
2. |
Integrable systems with spherical singularities A. V. Bolsinov
Regular and Chaotic Dynamics December 1, 2021 14:00
|
3. |
Геометрия Нийенхейса: открытые вопросы A. V. Bolsinov
Modern geometry methods October 14, 2020 18:30
|
4. |
gl-регулярные операторы Нийенхейса A. V. Bolsinov
Modern geometry methods September 30, 2020 18:30
|
5. |
On integrability of geodesic flows on three-dimensional manifolds A. V. Bolsinov
International Conference "Classical Mechanics, Dynamical Systems and Mathematical Physics" on the occasion of V. V. Kozlov 70th birthday January 23, 2020 10:45
|
6. |
Об интегрируемости геодезических потоков на трехмерных многообразиях A. V. Bolsinov
Differential geometry and applications December 16, 2019 16:45
|
7. |
Симплектические инварианты интегрируемых гамильтоновых систем: случай
вырожденных особенностей A. V. Bolsinov
Differential geometry and applications April 2, 2018 16:45
|
8. |
Бипуассоновы линейные пространства A. V. Bolsinov
Differential geometry and applications February 15, 2016 16:45
|
9. |
The argument shift method and sectional operators: applications in differential geometry A. V. Bolsinov
Lie groups and invariant theory December 16, 2015 16:45
|
10. |
Poisson structures and Poisson algebras A. V. Bolsinov
International scientific conference "Days of Classical Mechanics" January 26, 2015 13:00
|
11. |
Инварианты Жордана–Кронекера конечномерных алгебр Ли и их представлений A. V. Bolsinov
Modern geometry methods December 17, 2014 18:30
|
12. |
Argument shift method and section operators: new applications in differential geometry A. V. Bolsinov
Differential geometry and applications December 15, 2014 16:45
|
13. |
Projectively and c-projectively equivalent metrics A. V. Bolsinov
Modern geometry methods April 23, 2014 18:30
|
14. |
Obstructions to hamiltonization of non-holonomic systems and topological monodromy A. V. Bolsinov
Modern geometry methods March 27, 2013 18:30
|
15. |
Jordan–Kronecker invariants for finite-dimensional Lie algebras A. V. Bolsinov
Differential geometry and applications March 26, 2012 16:45
|
16. |
Berger algebras, special holonomy groups, and the shift-argument method A. V. Bolsinov
Differential geometry and applications April 25, 2011 16:45
|
|
|
Organisations |
|
|
|
|