Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2011, Volume 16, Issue 5, Pages 443–464
DOI: https://doi.org/10.1134/S1560354711050030
(Mi rcd446)
 

This article is cited in 59 scientific papers (total in 59 papers)

Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds

A.V. Bolsinova, A.V. Borisovb, I. S. Mamaevb

a School of Mathematics, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
b Institute of Computer Science, Udmurt State University, Universitetskaya 1, Izhevsk, 426034, Russia
Citations (59)
Abstract: The problem of Hamiltonization of nonholonomic systems, both integrable and non-integrable, is considered. This question is important in the qualitative analysis of such systems and it enables one to determine possible dynamical effects. The first part of the paper is devoted to representing integrable systems in a conformally Hamiltonian form. In the second part, the existence of a conformally Hamiltonian representation in a neighborhood of a periodic solution is proved for an arbitrary (including integrable) system preserving an invariant measure. Throughout the paper, general constructions are illustrated by examples in nonholonomic mechanics.
Keywords: conformally Hamiltonian system, nonholonomic system, invariant measure, periodic trajectory, invariant torus, integrable system.
Received: 17.12.2010
Accepted: 12.03.2011
Bibliographic databases:
Document Type: Article
MSC: 37Jxx
Language: English
Citation: A.V. Bolsinov, A.V. Borisov, I. S. Mamaev, “Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464
Citation in format AMSBIB
\Bibitem{BolBorMam11}
\by A.V. Bolsinov, A.V. Borisov, I. S. Mamaev
\paper Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds
\jour Regul. Chaotic Dyn.
\yr 2011
\vol 16
\issue 5
\pages 443--464
\mathnet{http://mi.mathnet.ru/rcd446}
\crossref{https://doi.org/10.1134/S1560354711050030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2844857}
\zmath{https://zbmath.org/?q=an:1309.37049}
Linking options:
  • https://www.mathnet.ru/eng/rcd446
  • https://www.mathnet.ru/eng/rcd/v16/i5/p443
  • This publication is cited in the following 59 articles:
    1. Malika Belrhazi, Tom Mestdag, “Geodesic Extensions of Mechanical Systems with Nonholonomic Constraints”, J Nonlinear Sci, 35:2 (2025)  crossref
    2. A. V. Tsyganov, “O tenzornykh invariantakh dlya integriruemykh sluchaev dvizheniya tverdogo tela Eilera, Lagranzha i Kovalevskoi”, Izv. RAN. Ser. matem., 89:2 (2025), 161–188  mathnet  crossref
    3. Elizaveta Artemova, Evgeny Vetchanin, “The motion of a circular foil in the field of a fixed point singularity: Integrability and asymptotic behavior”, Physics of Fluids, 36:2 (2024)  crossref
    4. Paula Balseiro, Maria Eugenia Garcia, Cora Inés Tori, Marcela Zuccalli, “Momentum map reduction for nonholonomic systems”, Nonlinearity, 36:10 (2023), 5401  crossref
    5. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres”, J Nonlinear Sci, 33:3 (2023)  crossref
    6. Misael Avendaño-Camacho, Claudio César García-Mendoza, José Crispín Ruiz-Pantaleón, Eduardo Velasco-Barreras, “Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems”, SIGMA, 18 (2022), 038, 29 pp.  mathnet  crossref  mathscinet
    7. Ivan A. Bizyaev, Ivan S. Mamaev, “Permanent Rotations in Nonholonomic Mechanics. Omnirotational Ellipsoid”, Regul. Chaotic Dyn., 27:6 (2022), 587–612  mathnet  crossref  mathscinet
    8. Balseiro P., Yapu L.P., “Conserved Quantities and Hamiltonization of Nonholonomic Systems”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 38:1 (2021), 23–60  crossref  mathscinet  isi  scopus
    9. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Demchenko's nonholonomic case of a gyroscopic ball rolling without sliding over a sphere after his 1923 Belgrade doctoral thesis”, Theor. Appl. Mech., 47:2 (2020), 257–287  mathnet  crossref
    10. Ivan Yu. Polekhin, “Precession of the Kovalevskaya and Goryachev – Chaplygin Tops”, Regul. Chaotic Dyn., 24:3 (2019), 281–297  mathnet  crossref  mathscinet
    11. Vyacheslav P. Kruglov, Sergey P. Kuznetsov, “Topaj – Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators”, Regul. Chaotic Dyn., 24:6 (2019), 725–738  mathnet  crossref  mathscinet
    12. Kurt M. Ehlers, Jair Koiller, “Cartan meets Chaplygin”, Theor. Appl. Mech., 46:1 (2019), 15–46  mathnet  crossref
    13. Borisov A.V., Ivanova T.B., Kilin A.A., Mamaev I.S., “Nonholonomic Rolling of a Ball on the Surface of a Rotating Cone”, Nonlinear Dyn., 97:2 (2019), 1635–1648  crossref  zmath  isi  scopus
    14. Garcia-Naranjo L.C., “Generalisation of Chaplygin'S Reducing Multiplier Theorem With An Application to Multi-Dimensional Nonholonomic Dynamics”, J. Phys. A-Math. Theor., 52:20 (2019), 205203  crossref  mathscinet  isi  scopus
    15. Jovanovic B., “Rolling Balls Over Spheres in R-N”, Nonlinearity, 31:9 (2018), 4006–4030  crossref  mathscinet  zmath  isi  scopus
    16. Andrey V. Tsiganov, “Bäcklund Transformations for the Nonholonomic Veselova System”, Regul. Chaotic Dyn., 22:2 (2017), 163–179  mathnet  crossref
    17. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. Isaac A García, Benito Hernández-Bermejo, “Inverse Jacobi multiplier as a link between conservative systems and Poisson structures”, J. Phys. A: Math. Theor., 50:32 (2017), 325204  crossref
    19. Alexey V. Borisov, Ivan S. Mamaev, “Adiabatic Invariants, Diffusion and Acceleration in Rigid Body Dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 232–248  mathnet  crossref  mathscinet  zmath  elib
    20. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Dynamics of Vortex Sources in a Deformation Flow”, Regul. Chaotic Dyn., 21:3 (2016), 367–376  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:253
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025