Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2012, Volume 17, Issue 5, Pages 451–478
DOI: https://doi.org/10.1134/S1560354712050073
(Mi rcd415)
 

This article is cited in 21 scientific papers (total in 21 papers)

The Bifurcation Analysis and the Conley Index in Mechanics

Alexey V. Bolsinovab, Alexey V. Borisovb, Ivan S. Mamaevb

a School of Mathematics, Loughborough University, United Kingdom, LE11 3TU, Loughborough, Leicestershire
b Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
Citations (21)
Abstract: The paper is devoted to the bifurcation analysis and the Conley index in Hamiltonian dynamical systems. We discuss the phenomenon of appearance (disappearance) of equilibrium points under the change of the Morse index of a critical point of a Hamiltonian. As an application of these techniques we find new relative equilibria in the problem of the motion of three point vortices of equal intensity in a circular domain.
Keywords: Morse index, Conley index, bifurcation analysis, bifurcation diagram, Hamiltonian dynamics, fixed point, relative equilibrium.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 11.G34.31.0039
14.740.11.0876
NSh-2519.2012.1
This research was supported by the Grant of the Government of the Russian Federation for state support of scientific research conducted under supervision of leading scientists in Russian educational institutions of higher professional education (contract no. 11.G34.31.0039) and the federal target programme “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (14.740.11.0876). The work was supported by the Grant of the President of the Russian Federation for the Leading Scientific Schools of the Russian Federation (NSh-2519.2012.1).
Received: 21.09.2011
Accepted: 10.04.2012
Bibliographic databases:
Document Type: Article
MSC: 76M23, 34A05
Language: English
Citation: Alexey V. Bolsinov, Alexey V. Borisov, Ivan S. Mamaev, “The Bifurcation Analysis and the Conley Index in Mechanics”, Regul. Chaotic Dyn., 17:5 (2012), 451–478
Citation in format AMSBIB
\Bibitem{BolBorMam12}
\by Alexey V. Bolsinov, Alexey V. Borisov, Ivan S. Mamaev
\paper The Bifurcation Analysis and the Conley Index in Mechanics
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 5
\pages 451--478
\mathnet{http://mi.mathnet.ru/rcd415}
\crossref{https://doi.org/10.1134/S1560354712050073}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2989517}
\zmath{https://zbmath.org/?q=an:1252.76055}
Linking options:
  • https://www.mathnet.ru/eng/rcd415
  • https://www.mathnet.ru/eng/rcd/v17/i5/p451
  • This publication is cited in the following 21 articles:
    1. Chunqiu Li, Jintao Wang, “Dynamic bifurcation of nonautonomous evolution equations under Landesman–Lazer condition with cohomology methods”, Nonlinear Analysis: Real World Applications, 82 (2025), 104228  crossref
    2. N.M. Sirakov, A. Bowden, M. Chen, L.H. Ngo, M. Luong, “Embedding vector field into image features to enhance classification”, Journal of Computational and Applied Mathematics, 441 (2024), 115685  crossref
    3. Toshiaki Fujiwara, Ernesto Pérez-Chavela, “Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem”, Regul. Chaotic Dyn., 29:6 (2024), 803–824  mathnet  crossref
    4. Ivan Bizyaev, “Classification of the trajectories of uncharged particles in the Schwarzschild-Melvin metric”, Phys. Rev. D, 110:10 (2024)  crossref
    5. Ivan A. Bizyaev, Ivan S. Mamaev, “Dynamics of a Circular Foil and Two Pairs of Point Vortices: New Relative Equilibria and a Generalization of Helmholtz Leapfrogging”, Symmetry, 15:3 (2023), 698  crossref
    6. Ivan Bizyaev, Ivan Mamaev, “Bifurcation diagram and a qualitative analysis of particle motion in a Kerr metric”, Phys. Rev. D, 105:6 (2022)  crossref
    7. Strzelecki D., “Periodic Solutions of Symmetric Hamiltonian Systems”, Arch. Ration. Mech. Anal., 237:2 (2020), 921–950  crossref  mathscinet  zmath  isi  scopus
    8. Borisov A.V., Garcia-Naranjo L.C., Mamaev I.S., Montaldi J., “Reduction and Relative Equilibria For the Two-Body Problem on Spaces of Constant Curvature”, Celest. Mech. Dyn. Astron., 130:6 (2018), UNSP 43  crossref  mathscinet  isi  scopus
    9. Polekhin I., “On Impulsive Isoenergetic Control in Systems With Gyroscopic Forces”, Int. J. Non-Linear Mech., 100 (2018), 1–5  crossref  isi  scopus
    10. Dai Q., Gebhard B., Bartsch T., “Periodic Solutions of N-Vortex Type Hamiltonian Systems Near the Domain Boundary”, SIAM J. Appl. Math., 78:2 (2018), 977–995  crossref  mathscinet  zmath  isi  scopus
    11. Leonid G. Kurakin, Irina V. Ostrovskaya, “On Stability of Thomson’s Vortex NN-gon in the Geostrophic Model of the Point Bessel Vortices”, Regul. Chaotic Dyn., 22:7 (2017), 865–879  mathnet  crossref
    12. Sergei Gukov, “RG flows and bifurcations”, Nuclear Physics B, 919 (2017), 583  crossref
    13. A. A. Oshemkov, P. E. Ryabov, S. V. Sokolov, “Explicit determination of certain periodic motions of a generalized two-field gyrostat”, Russ. J. Math. Phys., 24:4 (2017), 517  crossref
    14. Thomas Bartsch, Björn Gebhard, “Global continua of periodic solutions of singular first-order Hamiltonian systems of N-vortex type”, Math. Ann., 369:1-2 (2017), 627  crossref
    15. A. V. Borisov, P. E. Ryabov, S. V. Sokolov, “Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid”, Math. Notes, 99:6 (2016), 834–839  mathnet  crossref  crossref  mathscinet  isi  elib
    16. Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65  mathnet  crossref  mathscinet  zmath
    17. Leonid G. Kurakin, Irina V. Ostrovskaya, Mikhail A. Sokolovskiy, “On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid”, Regul. Chaotic Dyn., 21:3 (2016), 291–334  mathnet  crossref  mathscinet
    18. P. E. Ryabov, A. Yu. Savushkin, “Fazovaya topologiya volchka Kovalevskoi – Sokolova”, Nelineinaya dinam., 11:2 (2015), 287–317  mathnet
    19. Mikhail P. Kharlamov, “Extensions of the Appelrot Classes for the Generalized Gyrostat in a Double Force Field”, Regul. Chaotic Dyn., 19:2 (2014), 226–244  mathnet  crossref  mathscinet  zmath
    20. Sergei V. Sokolov, Sergei M. Ramodanov, “Falling Motion of a Circular Cylinder Interacting Dynamically with a Point Vortex”, Regul. Chaotic Dyn., 18:1-2 (2013), 184–193  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:205
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025