Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 1, Pages 3–13
DOI: https://doi.org/10.4213/mzm5704
(Mi mzm5704)
 

This article is cited in 6 scientific papers (total in 6 papers)

A Formal Frobenius Theorem and Argument Shift

A. V. Bolsinovab, K. M. Zueva

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Loughborough University
Full-text PDF (499 kB) Citations (6)
References:
Abstract: A formal Frobenius theorem, which is an analog of the classical integrability theorem for smooth distributions, is proved and applied to generalize the argument shift method of A. S. Mishchenko and A. T. Fomenko to finite-dimensional Lie algebras over any field of characteristic zero. A completeness criterion for a commutative set of polynomials constructed by the formal argument shift method is obtained.
Keywords: formal Frobenius theorem, argument shift, finite-dimensional Lie algebra, complete commutative set of polynomials.
Received: 23.07.2008
Revised: 29.11.2008
English version:
Mathematical Notes, 2009, Volume 86, Issue 1, Pages 10–18
DOI: https://doi.org/10.1134/S0001434609070025
Bibliographic databases:
UDC: 514.74+512.815
Language: Russian
Citation: A. V. Bolsinov, K. M. Zuev, “A Formal Frobenius Theorem and Argument Shift”, Mat. Zametki, 86:1 (2009), 3–13; Math. Notes, 86:1 (2009), 10–18
Citation in format AMSBIB
\Bibitem{BolZue09}
\by A.~V.~Bolsinov, K.~M.~Zuev
\paper A Formal Frobenius Theorem and Argument Shift
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/mzm5704}
\crossref{https://doi.org/10.4213/mzm5704}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2588634}
\zmath{https://zbmath.org/?q=an:1183.17010}
\elib{https://elibrary.ru/item.asp?id=15301917}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 1
\pages 10--18
\crossref{https://doi.org/10.1134/S0001434609070025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269660400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249103385}
Linking options:
  • https://www.mathnet.ru/eng/mzm5704
  • https://doi.org/10.4213/mzm5704
  • https://www.mathnet.ru/eng/mzm/v86/i1/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024