|
This article is cited in 3 scientific papers (total in 3 papers)
Алгебраические и геометрические свойства квадратичных гамильтонианов, задаваемых секционными операторами
A. V. Bolsinov, A. Yu. Konyaev M. V. Lomonosov Moscow State University
Abstract:
Following the terminology introduced by V. V. Trofimov and A. T. Fomenko, we say that a self-adjoint operator $\phi\colon \mathfrak{g}^* \to \mathfrak{g}$ is sectional if it satisfies the identity $\operatorname{ad}^{*}_{\phi x}a=\operatorname{ad}^{*}_{\beta}x$, $x\in \mathfrak{g}^*$, where $\mathfrak{g}$ is a finite-dimensional Lie algebra and $a\in \mathfrak{g}^*$ and $\beta \in \mathfrak{g}$ are fixed elements. In the case of a semisimple Lie algebra $\mathfrak{g}$, the above identity takes the form $[\phi x,a]=[\beta,x]$ and naturally arises in the theory of integrable systems and differential geometry (namely, in the dynamics of $n$-dimensional rigid bodies, the argument shift method, and the classification of projectively equivalent Riemannian metrics). This paper studies general properties of sectional operators, in particular, integrability and the bi-Hamiltonian property for the corresponding Euler equation $\dot x=\operatorname{ad}^*_{\phi x} x$.
Keywords:
sectional operator, integrable Euler equation, bi-Hamiltonian Euler equation, finite-dimensional Lie algebra, coadjoint representation, Poisson bracket, Frobenius Lie algebra, semi-simple Lie algebra.
Received: 13.10.2010
Citation:
A. V. Bolsinov, A. Yu. Konyaev, “Алгебраические и геометрические свойства квадратичных гамильтонианов, задаваемых секционными операторами”, Mat. Zametki, 90:5 (2011), 689–702; Math. Notes, 90:5 (2011), 666–677
Linking options:
https://www.mathnet.ru/eng/mzm8737https://doi.org/10.4213/mzm8737 https://www.mathnet.ru/eng/mzm/v90/i5/p689
|
Statistics & downloads: |
Abstract page: | 599 | Full-text PDF : | 231 | References: | 73 | First page: | 14 |
|