|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
R. V. Namm, G. I. Tsoi, “Duality method for solving 3D contact problems with friction”, Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023), 1225–1237 ; Comput. Math. Math. Phys., 63:7 (2023), 1350–1361 |
|
2019 |
2. |
A. Zhiltsov, R. V. Namm, “Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary”, Dal'nevost. Mat. Zh., 19:2 (2019), 173–184 |
1
|
3. |
R. V. Namm, G. I. Tsoi, “Solution of a contact elasticity problem with a rigid inclusion”, Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019), 699–706 ; Comput. Math. Math. Phys., 59:4 (2019), 659–666 |
12
|
|
2017 |
4. |
E. M. Vikhtenko, G. S. Woo, R. V. Namm, “Modified dual scheme for finite-dimensional and infinite-dimensional convex optimization problems”, Dal'nevost. Mat. Zh., 17:2 (2017), 158–169 |
1
|
5. |
R. V. Namm, G. I. Tsoi, “The method of successive approximations for solving quasi-variational Signorini inequality”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1, 44–52 ; Russian Math. (Iz. VUZ), 61:1 (2017), 39–46 |
3
|
6. |
R. V. Namm, G. I. Tsoy, “A modified dual scheme for solving an elastic crack problem”, Sib. Zh. Vychisl. Mat., 20:1 (2017), 47–58 ; Num. Anal. Appl., 10:1 (2017), 37–46 |
10
|
|
2016 |
7. |
E. M. Vikhtenko, R. V. Namm, M. V. Chervyakova, “Duality method for solving model crack problem”, Dal'nevost. Mat. Zh., 16:2 (2016), 137–146 |
8. |
E. M. Vikhtenko, R. V. Namm, “On the dual method for a model problem with a crack”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 36–43 |
5
|
|
2015 |
9. |
A. Zhiltsov, R. V. Namm, “The Lagrange multiplier method in the finite convex programming problem”, Dal'nevost. Mat. Zh., 15:1 (2015), 53–60 |
4
|
|
2014 |
10. |
E. M. Vikhtenko, G. S. Woo, R. V. Namm, “The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals”, Dal'nevost. Mat. Zh., 14:1 (2014), 6–17 |
7
|
11. |
E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes”, Sib. Zh. Vychisl. Mat., 17:1 (2014), 43–52 ; Num. Anal. Appl., 7:1 (2014), 36–44 |
11
|
12. |
E. M. Vikhtenko, G. Woo, R. V. Namm, “Sensitivity functionals in contact problems of elasticity theory”, Zh. Vychisl. Mat. Mat. Fiz., 54:7 (2014), 1218–1228 ; Comput. Math. Math. Phys., 54:7 (2014), 1190–1200 |
12
|
|
2012 |
13. |
E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “Modified Lagrange functionals to solve the variational and quasivariational inequalities of mechanics”, Avtomat. i Telemekh., 2012, no. 4, 3–17 ; Autom. Remote Control, 73:4 (2012), 605–615 |
5
|
14. |
N. N. Maksimova (Kushniruk), R. V. Namm, “Finite-element solution of a model mechanical problem with friction based on a smoothing Lagrange multiplier method”, Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012), 24–34 ; Comput. Math. Math. Phys., 52:1 (2012), 20–30 |
4
|
|
2011 |
15. |
N. N. Kushniruk, R. V. Namm, “Iterative proximal regularization of a modified Lagrangian functional for solving a semicoercive model problem with friction”, Sib. Zh. Vychisl. Mat., 14:4 (2011), 381–396 ; Num. Anal. Appl., 4:4 (2011), 319–332 |
6
|
16. |
N. N. Kushniruk, R. V. Namm, A. S. Tkachenko, “Stable smoothing method for solving a model mechanical problem with friction”, Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011), 1032–1042 ; Comput. Math. Math. Phys., 51:6 (2011), 965–974 |
3
|
|
2010 |
17. |
R. V. Namm, A. S. Tkachenko, “Solution of a semicoercive Signorini problem by a method of iterative proximal regularization of a modified Lagrange functional”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 4, 36–45 ; Russian Math. (Iz. VUZ), 54:4 (2010), 31–39 |
2
|
18. |
È. M. Vikhtenko, G. Vu, R. V. Namm, “On the convergence of the Uzawa method with a modified Lagrange functional for variational inequalities in mechanics”, Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010), 1357–1366 ; Comput. Math. Math. Phys., 50:8 (2010), 1289–1298 |
6
|
|
2009 |
19. |
E. M. Vikhtenko, R. V. Namm, “On a characteristic properties of modified Lagrangian functional in a problem of elasticity with a given friction”, Dal'nevost. Mat. Zh., 9:1-2 (2009), 38–47 |
4
|
20. |
H. Kim, R. V. Namm, E. M. Vikhtenko, G. Woo, “Regularization in the Mosolov and Myasnikov problem with boundary friction”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 6, 10–19 ; Russian Math. (Iz. VUZ), 53:6 (2009), 7–14 |
1
|
21. |
N. N. Kushniruk, R. V. Namm, “The Lagrange multipliers method for solving a semicoercive model problem with friction”, Sib. Zh. Vychisl. Mat., 12:4 (2009), 409–420 ; Num. Anal. Appl., 2:4 (2009), 330–340 |
9
|
22. |
R. V. Namm, S. A. Sachkov, “Solving the quasi-variational Signorini inequality by the method of successive approximations”, Zh. Vychisl. Mat. Mat. Fiz., 49:5 (2009), 805–814 ; Comput. Math. Math. Phys., 49:5 (2009), 776–785 |
6
|
|
2008 |
23. |
N. N. Kushniruk, R. V. Namm, “On a solution of semicoercive model problem with friction”, Dal'nevost. Mat. Zh., 8:2 (2008), 171–179 |
1
|
24. |
E. M. Vikhtenko, R. V. Namm, “Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality”, Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008), 1571–1579 ; Comput. Math. Math. Phys., 48:9 (2008), 1536–1544 |
8
|
|
2007 |
25. |
E. M. Vikhtenko, R. V. Namm, “Duality scheme for solving the semicoercive signorini problem with friction”, Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007), 2023–2036 ; Comput. Math. Math. Phys., 47:12 (2007), 1938–1951 |
26
|
|
2006 |
26. |
A. Ya. Zolotukhin, R. V. Namm, A. V. Pachina, “On the linear rate of convergence of methods with iterative proximal regularization”, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 12, 44–54 ; Russian Math. (Iz. VUZ), 50:12 (2006), 41–52 |
1
|
27. |
G. S. Woo, S. Kim, R. V. Namm, S. A. Sachkov, “Iterative proximal regularization method for finding a saddle point in the semicoercive Signorini problem”, Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006), 2024–2031 ; Comput. Math. Math. Phys., 46:11 (2006), 1932–1939 |
11
|
28. |
G. S. Woo, R. V. Namm, S. A. Sachkov, “An iterative method based on a modified Lagrangian functional for finding a saddle point in the semicoercive Signorini problem”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006), 26–36 ; Comput. Math. Math. Phys., 46:1 (2006), 23–33 |
22
|
|
2004 |
29. |
E. M. Vikhtenko, R. V. Namm, “A method for solving semi-coercive variational inequalities, based on the method of iterative proximal regularization”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 1, 31–35 ; Russian Math. (Iz. VUZ), 48:1 (2004), 28–32 |
8
|
|
2003 |
30. |
A. Ya. Zolotukhin, R. V. Namm, A. V. Pachina, “Approximate solution of the semi-coercive Signorini problem with inhomogeneous boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 43:3 (2003), 388–398 ; Comput. Math. Math. Phys., 43:3 (2003), 370–379 |
2
|
|
2002 |
31. |
R. V. Namm, A. G. Podgaev, “On a $W^2_2$ regularity of a solution of semicoercive variational inequalities”, Dal'nevost. Mat. Zh., 3:1 (2002), 210–215 |
5
|
32. |
R. V. Namm, S. A. Sachkov, “On a stable duality scheme method for solution of the Mosolov and the Miasnikov problem with boundary friction”, Sib. Zh. Vychisl. Mat., 5:4 (2002), 351–365 |
2
|
|
2001 |
33. |
R. V. Namm, G. Woo, “On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition”, Dal'nevost. Mat. Zh., 2:1 (2001), 77–80 |
34. |
A. Ya. Zolotukhin, R. V. Namm, A. V. Pachina, “An approximate solution of the Mosolov and the Miasnikov variational problem with the Coulomb boundary friction”, Sib. Zh. Vychisl. Mat., 4:2 (2001), 163–177 |
4
|
|
1998 |
35. |
R. V. Namm, “On characterization of limit point in the iterative prox-regularization method”, Sib. Zh. Vychisl. Mat., 1:2 (1998), 143–152 |
1
|
|
1995 |
36. |
R. V. Namm, “On the rate of convergence of the finite element method in the Signorini problem”, Differ. Uravn., 31:5 (1995), 888–889 ; Differ. Equ., 31:5 (1995), 826–828 |
|
1983 |
37. |
A. A. Kaplan, R. V. Namm, “On a characteristic of minimizing sequences for the Signorini
problem”, Dokl. Akad. Nauk SSSR, 273:4 (1983), 797–800 |
2
|
|
Organisations |
|
|
|
|