Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 1, Pages 36–43 (Mi timm1257)  

This article is cited in 5 scientific papers (total in 5 papers)

On the dual method for a model problem with a crack

E. M. Vikhtenkoa, R. V. Nammb

a Pacific National University, Khabarovsk
b Computer Centre of Far Eastern Branch RAS
Full-text PDF (183 kB) Citations (5)
References:
Abstract: The dual method based on a modified Lagrangian functional is applied to a model problem with a crack. The convergence of the method is investigated under the assumption that the solution of the primal problem is H1-regular. The duality relation is established for the primal and dual problems.
Keywords: model problem with a crack, dual method, modified Lagrangian functional, sensitivity functional.
Received: 30.04.2015
Bibliographic databases:
Document Type: Article
UDC: 519.624.8
Language: Russian
Citation: E. M. Vikhtenko, R. V. Namm, “On the dual method for a model problem with a crack”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 36–43
Citation in format AMSBIB
\Bibitem{VikNam16}
\by E.~M.~Vikhtenko, R.~V.~Namm
\paper On the dual method for a model problem with a crack
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 1
\pages 36--43
\mathnet{http://mi.mathnet.ru/timm1257}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3497181}
\elib{https://elibrary.ru/item.asp?id=25655592}
Linking options:
  • https://www.mathnet.ru/eng/timm1257
  • https://www.mathnet.ru/eng/timm/v22/i1/p36
  • This publication is cited in the following 5 articles:
    1. A. V. Zhiltsov, N. N. Maksimova, “Dvoistvennyi metod dlya resheniya zadachi o ravnovesii tela, soderzhaschego tonkii defekt”, Sib. zhurn. vychisl. matem., 26:2 (2023), 183–198  mathnet  crossref
    2. R. V. Namm, G. I. Tsoi, “Solution of a contact elasticity problem with a rigid inclusion”, Comput. Math. Math. Phys., 59:4 (2019), 659–666  mathnet  crossref  crossref  isi  elib
    3. R. V. Namm, G. I. Tsoy, “A modified dual scheme for solving an elastic crack problem”, Num. Anal. Appl., 10:1 (2017), 37–46  mathnet  crossref  crossref  mathscinet  isi  elib
    4. E. M. Vikhtenko, G. S. Vu, R. V. Namm, “Modifitsirovannaya skhema dvoistvennosti dlya zadach konechnomernoi i beskonechnomernoi vypukloi optimizatsii”, Dalnevost. matem. zhurn., 17:2 (2017), 158–169  mathnet  elib
    5. E. M. Vikhtenko, R. V. Namm, M. V. Chervyakova, “Metod dvoistvennosti dlya resheniya modelnoi zadachi s treschinoi”, Dalnevost. matem. zhurn., 16:2 (2016), 137–146  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:354
    Full-text PDF :110
    References:66
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025