Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 1, Pages 44–52 (Mi ivm9195)  

This article is cited in 3 scientific papers (total in 3 papers)

The method of successive approximations for solving quasi-variational Signorini inequality

R. V. Namm, G. I. Tsoi

Computing Center of Far-Eastern Branch of Russian Academy of Siences, 65 Kim Yu Chen str., Khabarovsk, 680000 Russia
Full-text PDF (294 kB) Citations (3)
References:
Abstract: We consider the method of successive approximations for solving the semicoercive quasi-variational Signorini inequality corresponding to the contact problem of elasticity theory with friction. Each outer step of the iterative process involves the Signorini problem with given friction, which is solved by the Uzawa method based on an iterative proximal regularization of a modified Lagrangian functional. We investigate stabilization sequence of auxiliary finite element solutions on the outer steps of the method of successive approximations and present the results of numerical calculation.
Keywords: contact problem of the elasticity theory, Lagrangian functional, saddle point, Uzawa method, proximal regularization, finite element method.
Funding agency Grant number
Far Eastern Branch of the Russian Academy of Sciences 15-I-4-075
Received: 21.05.2015
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 1, Pages 39–46
DOI: https://doi.org/10.3103/S1066369X17010054
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: R. V. Namm, G. I. Tsoi, “The method of successive approximations for solving quasi-variational Signorini inequality”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1, 44–52; Russian Math. (Iz. VUZ), 61:1 (2017), 39–46
Citation in format AMSBIB
\Bibitem{NamTso17}
\by R.~V.~Namm, G.~I.~Tsoi
\paper The method of successive approximations for solving quasi-variational Signorini inequality
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 1
\pages 44--52
\mathnet{http://mi.mathnet.ru/ivm9195}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 1
\pages 39--46
\crossref{https://doi.org/10.3103/S1066369X17010054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408827200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013869022}
Linking options:
  • https://www.mathnet.ru/eng/ivm9195
  • https://www.mathnet.ru/eng/ivm/y2017/i1/p44
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :74
    References:53
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024