Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2009, Volume 12, Number 4, Pages 409–420 (Mi sjvm136)  

This article is cited in 9 scientific papers (total in 9 papers)

The Lagrange multipliers method for solving a semicoercive model problem with friction

N. N. Kushniruka, R. V. Nammb

a Amur State University, Blagoveshchensk
b Pacific National University, Khabarovsk
Full-text PDF (209 kB) Citations (9)
References:
Abstract: In model problems with friction, unconditional minimization of a nondifferentiable functional is reduced to conditional minimization of a differentiable functional. To solve the semicoercive problem obtained, we use a dual scheme based on a modified Lagrangian functional.
Key words: semicoercive model friction problem, variational inequality, Lagrange multipliers method.
Received: 08.12.2008
English version:
Numerical Analysis and Applications, 2009, Volume 2, Issue 4, Pages 330–340
DOI: https://doi.org/10.1134/S1995423909040053
Bibliographic databases:
UDC: 519.642.8
Language: Russian
Citation: N. N. Kushniruk, R. V. Namm, “The Lagrange multipliers method for solving a semicoercive model problem with friction”, Sib. Zh. Vychisl. Mat., 12:4 (2009), 409–420; Num. Anal. Appl., 2:4 (2009), 330–340
Citation in format AMSBIB
\Bibitem{KusNam09}
\by N.~N.~Kushniruk, R.~V.~Namm
\paper The Lagrange multipliers method for solving a~semicoercive model problem with friction
\jour Sib. Zh. Vychisl. Mat.
\yr 2009
\vol 12
\issue 4
\pages 409--420
\mathnet{http://mi.mathnet.ru/sjvm136}
\transl
\jour Num. Anal. Appl.
\yr 2009
\vol 2
\issue 4
\pages 330--340
\crossref{https://doi.org/10.1134/S1995423909040053}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952794868}
Linking options:
  • https://www.mathnet.ru/eng/sjvm136
  • https://www.mathnet.ru/eng/sjvm/v12/i4/p409
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024