Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 1, Pages 47–58
DOI: https://doi.org/10.15372/SJNM20170105
(Mi sjvm635)
 

This article is cited in 10 scientific papers (total in 10 papers)

A modified dual scheme for solving an elastic crack problem

R. V. Namm, G. I. Tsoy

Computer Centre of Far Eastern Branch RAS, Kim Yu Chena str., 65, Habarovsk, 680063, Russia
References:
Abstract: The dual scheme for solving a crack problem in terms of displacements is considered. The dual solution method is based on a modified Lagrangian functional. In addition, the method convergence is investigated under natural assumptions on $H^1$-regularity of the crack problem solution. The duality relation for the primal and dual problems has been proposed.
Key words: elastic crack problem, duality scheme, modified Lagrangian functional, sensitivity functional, duality relation, weak lower semicontinuity.
Received: 31.05.2016
Revised: 07.07.2016
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 1, Pages 37–46
DOI: https://doi.org/10.1134/S1995423917010050
Bibliographic databases:
Document Type: Article
UDC: 519.853.2+519.632
Language: Russian
Citation: R. V. Namm, G. I. Tsoy, “A modified dual scheme for solving an elastic crack problem”, Sib. Zh. Vychisl. Mat., 20:1 (2017), 47–58; Num. Anal. Appl., 10:1 (2017), 37–46
Citation in format AMSBIB
\Bibitem{NamTso17}
\by R.~V.~Namm, G.~I.~Tsoy
\paper A modified dual scheme for solving an elastic crack problem
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 1
\pages 47--58
\mathnet{http://mi.mathnet.ru/sjvm635}
\crossref{https://doi.org/10.15372/SJNM20170105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3629068}
\elib{https://elibrary.ru/item.asp?id=28400345}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 1
\pages 37--46
\crossref{https://doi.org/10.1134/S1995423917010050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396367300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014745050}
Linking options:
  • https://www.mathnet.ru/eng/sjvm635
  • https://www.mathnet.ru/eng/sjvm/v20/i1/p47
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024