|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
A. N. Glebov, S. S. Lylova, S. G. Toktokhoeva, “Approximation algorithms for 2-PSP-2W-max and 2-CC-2W-max”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 923–941 |
|
2021 |
2. |
A. N. Glebov, “Path partitioning planar graphs with restrictions on short cycles”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 975–984 |
|
2020 |
3. |
A. N. Glebov, S. G. Toktokhoeva, “A polynomial algorithm with asymptotic ratio $2/3$ for the asymmetric maximization version of the $m$-PSP”, Diskretn. Anal. Issled. Oper., 27:3 (2020), 28–52 ; J. Appl. Industr. Math., 14:3 (2020), 456–469 |
4. |
A. N. Glebov, I. A. Pavlov, K. A. Khadaev, “Vertex colourings of multigraphs with forbiddances on edges”, Sib. Èlektron. Mat. Izv., 17 (2020), 637–646 |
5. |
A. N. Glebov, “Colouring planar graphs with bounded monochromatic components”, Sib. Èlektron. Mat. Izv., 17 (2020), 513–520 |
1
|
|
2019 |
6. |
A. N. Glebov, S. G. Toktokhoeva, “A polynomial $3/5$-approximate algorithm for the asymmetric maximization version of $3$-PSP”, Diskretn. Anal. Issled. Oper., 26:2 (2019), 30–59 ; J. Appl. Industr. Math., 13:2 (2019), 219–238 |
2
|
|
2018 |
7. |
A. N. Glebov, D. Zh. Zambalayeva, “Path partitioning planar graphs of girth 4 without adjacent short cycles”, Sib. Èlektron. Mat. Izv., 15 (2018), 1040–1047 |
1
|
|
2017 |
8. |
A. N. Glebov, “An enhancement of Nash–Williams' Theorem on edge arboricity of graphs”, Sib. Èlektron. Mat. Izv., 14 (2017), 1324–1329 |
|
2014 |
9. |
A. N. Glebov, D. Zh. Zambalaeva, A. A. Skretneva, “$2/3$-approximation algorithm for the maximization version of the asymmetric two peripatetic salesman problem”, Diskretn. Anal. Issled. Oper., 21:6 (2014), 11–20 ; J. Appl. Industr. Math., 9:1 (2015), 61–67 |
3
|
10. |
A. N. Glebov, D. Zh. Zambalaeva, “A partition of a planar graph with girth 6 into two forests containing no path of length greater than 4”, Diskretn. Anal. Issled. Oper., 21:2 (2014), 33–51 ; J. Appl. Industr. Math., 8:3 (2014), 317–328 |
4
|
|
2011 |
11. |
A. N. Glebov, D. Zh. Zambalayeva, “An approximation algorithm for the minimum 2-PSP with different weight functions valued 1 and 2”, Diskretn. Anal. Issled. Oper., 18:5 (2011), 11–37 ; J. Appl. Industr. Math., 6:2 (2012), 167–183 |
10
|
12. |
A. N. Glebov, D. Zh. Zambalayeva, “Polynomial algorithm with approximation ratio $7/9$ for maximum 2-PSP”, Diskretn. Anal. Issled. Oper., 18:4 (2011), 17–48 ; J. Appl. Industr. Math., 6:1 (2012), 69–89 |
16
|
13. |
A. N. Glebov, A. V. Gordeeva, D. Zh. Zambalayeva, “7/5-approximation algorithm for 2-PSP on minimum with different weight functions”, Sib. Èlektron. Mat. Izv., 8 (2011), 296–309 |
5
|
|
2007 |
14. |
E. Kh. Gimadi, Yu. V. Glazkov, A. N. Glebov, “Алгоритмы приближённого решения задачи о двух коммивояжёрах в полном графе с весами рёбер 1 и 2”, Diskretn. Anal. Issled. Oper., Ser. 2, 14:2 (2007), 41–61 ; J. Appl. Industr. Math., 3:1 (2009), 46–60 |
19
|
15. |
A. N. Glebov, D. Zh. Zambalayeva, “Path partitions of planar graphs”, Sib. Èlektron. Mat. Izv., 4 (2007), 450–459 |
17
|
|
2006 |
16. |
O. V. Borodin, A. N. Glebov, T. R. Jensen, A. Raspaud, “Planar graphs without triangles adjacent to cycles of length from $3$ to $9$ are $3$-colorable”, Sib. Èlektron. Mat. Izv., 3 (2006), 428–440 |
12
|
|
2004 |
17. |
A. N. Glebov, “On a language generated by smooth functions”, Diskretn. Anal. Issled. Oper., Ser. 1, 11:1 (2004), 30–51 |
18. |
O. V. Borodin, A. N. Glebov, “A sufficient condition for the 3-colorability of plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 11:1 (2004), 13–29 |
5
|
19. |
O. V. Borodin, A. N. Glebov, A. O. Ivanova, T. K. Neustroeva, V. A. Tashkinov, “Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable”, Sib. Èlektron. Mat. Izv., 1 (2004), 129–141 |
34
|
20. |
V. A. Aksenov, O. V. Borodin, A. N. Glebov, “Continuation of a $3$-coloring from a $7$-face onto a plane graph without $3$-cycles”, Sib. Èlektron. Mat. Izv., 1 (2004), 117–128 |
10
|
|
2003 |
21. |
V. A. Aksenov, O. V. Borodin, A. N. Glebov, “Continuation of a 3-coloring from a 6-face to a plane graph without 3-cycles”, Diskretn. Anal. Issled. Oper., Ser. 1, 10:3 (2003), 3–11 |
14
|
|
2002 |
22. |
A. N. Glebov, “Estimates for the degeneracy number of intersection graphs of boxes on the plane depending on the girth”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:2 (2002), 3–20 |
23. |
V. A. Aksenov, O. V. Borodin, A. N. Glebov, “On the continuation of a 3-coloring from two vertices in a plane graph without 3-cycles”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:1 (2002), 3–26 |
7
|
|
2001 |
24. |
O. V. Borodin, A. N. Glebov, “On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001), 34–53 |
17
|
25. |
O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel, “Minimal degrees and chromatic numbers of squares of planar graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001), 9–33 |
31
|
26. |
O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel, “The structure of plane triangulations in terms of clusters and stars”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:2 (2001), 15–39 |
22
|
|
2000 |
27. |
V. A. Aksenov, O. V. Borodin, A. N. Glebov, “On a structural property of plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 7:4 (2000), 5–19 |
1
|
|
Organisations |
|
|
|
|