Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 1040–1047
DOI: https://doi.org/10.17377/semi.2018.15.087
(Mi semr978)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

Path partitioning planar graphs of girth 4 without adjacent short cycles

A. N. Glebov, D. Zh. Zambalayeva

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Full-text PDF (161 kB) Citations (1)
References:
Abstract: A graph $G$ is $(a,b)$-partitionable for positive intergers $a,b$ if its vertex set can be partitioned into subsets $V_1,V_2$ such that the induced subgraph $G[V_1]$ contains no path on $a+1$ vertices and the induced subgraph $G[V_2]$ contains no path on $b+1$ vertices. A graph $G$ is $\tau$-partitionable if it is $(a,b)$-partitionable for every pair $a,b$ such that $a+b$ is the number of vertices in the longest path of $G$. In 1981, Lovász and Mihók posed the following Path Partition Conjecture: every graph is $\tau$-partitionable. In 2007, we proved the conjecture for planar graphs of girth at least 5. The aim of this paper is to improve this result by showing that every triangle-free planar graph, where cycles of length 4 are not adjacent to cycles of length 4 and 5, is $\tau$-partitionable.
Keywords: graph, planar graph, girth, triangle-free graph, path partition, $\tau$-partitionable graph, path partition conjecture.
Funding agency Grant number
Russian Science Foundation 16-11-10054
Received November 30, 2017, published September 21, 2018
Bibliographic databases:
Document Type: Article
UDC: 519.172.2, 519.174
MSC: 05C10, 05C15, 05C70
Language: Russian
Citation: A. N. Glebov, D. Zh. Zambalayeva, “Path partitioning planar graphs of girth 4 without adjacent short cycles”, Sib. Èlektron. Mat. Izv., 15 (2018), 1040–1047
Citation in format AMSBIB
\Bibitem{GleZam18}
\by A.~N.~Glebov, D.~Zh.~Zambalayeva
\paper Path partitioning planar graphs of girth 4 without adjacent short cycles
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 1040--1047
\mathnet{http://mi.mathnet.ru/semr978}
\crossref{https://doi.org/10.17377/semi.2018.15.087}
Linking options:
  • https://www.mathnet.ru/eng/semr978
  • https://www.mathnet.ru/eng/semr/v15/p1040
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :32
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024