Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2007, Volume 4, Pages 450–459 (Mi semr167)  

This article is cited in 17 scientific papers (total in 17 papers)

Research papers

Path partitions of planar graphs

A. N. Glebova, D. Zh. Zambalayevab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
References:
Abstract: A graph $G$ is said to be $(a,b)$-partitionable for positive intergers $a,b$ if its vertices can be partitioned into subsets $V_1,V_2$ such that in $G[V_1]$ any path contains at most $a$ vertices and in $G[V_2]$ any path contains at most $b$ vertices. Graph $G$ is $\tau$-partitionable if it is $(a,b)$-partitionable for any $a,b$ such that $a+b$ is the number of vertices in the longest path of $G$. We prove that every planar graph of girth $5$ is $\tau$-partitionable and that planar graphs with girth $8$, $9$ and $16$ are $(2,3)$-, $(2,2)$- and $(1,2)$-partitionable respectively.
Received October 30, 2007, published November 8, 2007
Bibliographic databases:
Document Type: Article
UDC: 519.172.2
MSC: 05C15
Language: Russian
Citation: A. N. Glebov, D. Zh. Zambalayeva, “Path partitions of planar graphs”, Sib. Èlektron. Mat. Izv., 4 (2007), 450–459
Citation in format AMSBIB
\Bibitem{GleZam07}
\by A.~N.~Glebov, D.~Zh.~Zambalayeva
\paper Path partitions of planar graphs
\jour Sib. \`Elektron. Mat. Izv.
\yr 2007
\vol 4
\pages 450--459
\mathnet{http://mi.mathnet.ru/semr167}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465436}
\zmath{https://zbmath.org/?q=an:1132.05315}
Linking options:
  • https://www.mathnet.ru/eng/semr167
  • https://www.mathnet.ru/eng/semr/v4/p450
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024