Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2019, Volume 26, Issue 2, Pages 30–59
DOI: https://doi.org/10.33048/daio.2019.26.622
(Mi da922)
 

This article is cited in 2 scientific papers (total in 2 papers)

A polynomial $3/5$-approximate algorithm for the asymmetric maximization version of $3$-PSP

A. N. Glebovab, S. G. Toktokhoevab

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk, Russia
b Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
Full-text PDF (595 kB) Citations (2)
References:
Abstract: We present a first polynomial algorithm with guaranteed approximation ratio for the asymmetric maximization version of the asymmetric $3$-Peripatetic Salesman Problem ($3$-APSP). This problem consists in finding the three edge-disjoint Hamiltonian circuits of maximal total weight in a complete weighted digraph. We prove that the algorithm has guaranteed approximation ratio $3/5$ and cubic running-time. Illustr. 18, bibliogr. 27.
Keywords: Hamiltonian cycle, traveling salesman problem, $m$-peripatetic salesman problem, approximation algorithm, guaranteed approximation ratio.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00353_a
18-01-00747_а
Received: 06.06.2018
Revised: 27.11.2018
Accepted: 28.11.2018
English version:
Journal of Applied and Industrial Mathematics, 2019, Volume 13, Issue 2, Pages 219–238
DOI: https://doi.org/10.1134/S1990478919020042
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: A. N. Glebov, S. G. Toktokhoeva, “A polynomial $3/5$-approximate algorithm for the asymmetric maximization version of $3$-PSP”, Diskretn. Anal. Issled. Oper., 26:2 (2019), 30–59; J. Appl. Industr. Math., 13:2 (2019), 219–238
Citation in format AMSBIB
\Bibitem{GleTok19}
\by A.~N.~Glebov, S.~G.~Toktokhoeva
\paper A polynomial $3/5$-approximate algorithm for~the~asymmetric maximization version of $3$-PSP
\jour Diskretn. Anal. Issled. Oper.
\yr 2019
\vol 26
\issue 2
\pages 30--59
\mathnet{http://mi.mathnet.ru/da922}
\crossref{https://doi.org/10.33048/daio.2019.26.622}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 2
\pages 219--238
\crossref{https://doi.org/10.1134/S1990478919020042}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067404465}
Linking options:
  • https://www.mathnet.ru/eng/da922
  • https://www.mathnet.ru/eng/da/v26/i2/p30
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025