01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date:
09.02.1951
E-mail:
,
Keywords:
Von Neumann algebras,
non commutatuve integration,
symmetric spaces of measurable functions and mesurable operators,
ergodic theorems for contractions.
Non commutative symmetric spaces. Theory of deivations on operator algebras.
Main publications:
Chilin V. I., Medzjitov A. M., Sukochev F. A. Isometrics of non-commutative Lorentz spaces // Math. Zeitschrift, 1989, v. 200, p. 527–545.
Chilin V. I., Sukochev F. A. Weak convergence in non-commutative symmetric spaces // J. Operator Theory, 1994, v. 31, p. 35–65.
Bendersky O. Ja., Chilin V. I., Litvinov S. N. A description of the commutative symmetric operator algebras in Pontryagin space // J. Operator Theory, 1997, v. 37, 2, p. 201–222.
Abdullaev R., Chilin V. I. Arens algebras, associated with commutative von Neumann algebras // Ann. Math. Blaise Pascal, 1998, v. 5, № 1, p. 1–12.
V. I. Chilin, G. B. Zakirova, “Linear Isometries of Banach-Kantorovich $L_p$-spaces”, Taurida Journal of Computer Science Theory and Mathematics, 2023, no. 1, 7–18
2.
B. S. Zakirov, V. I. Chilin, “Positive isometries of Orlicz–Kantorovich spaces”, Vladikavkaz. Mat. Zh., 25:2 (2023), 103–116
2021
3.
A. S. Veksler, V. I. Chilin, “Statistical ergodic theorem in symmetric spaces for infinite measures”, CMFD, 67:4 (2021), 654–667
4.
B. R. Aminov, V. I. Chilin, “Weak continuity of skew-Hermitian operators in Banach ideals”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197 (2021), 3–11
5.
A. N. Azizov, V. I. Chilin, “Ergodic theorems in Banach ideals of compact operators”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 534–547
2020
6.
R. Abdullaev, V. Chilin, B. Madaminov, “Isometries of spaces of $LOG$-integrable functions”, Sib. Èlektron. Mat. Izv., 17 (2020), 218–226
A. N. Azizov, V. I. Chilin, “Ergodic theorems for flows in the ideals of compact operators”, Taurida Journal of Computer Science Theory and Mathematics, 2020, no. 4, 7–17
2019
8.
V. I. Chilin, J. A. Karimov, “The cyclical compactness in Banach $C_{\infty}(Q)$-modules”, CMFD, 65:1 (2019), 137–155
9.
K. K. Muminov, V. I. Chilin, “Basis of trancendense in differential field of invariants of pseugo-Galilean group”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 3, 19–31; Russian Math. (Iz. VUZ), 63:3 (2019), 15–24
B. R. Aminov, V. I. Chilin, “Isometries of real subspaces of self-adjoint operators in banach symmetric ideals”, Vladikavkaz. Mat. Zh., 21:4 (2019), 11–24
A. A. Alimov, V. I. Chilin, “$2$-Local isometries of non-commutative Lorentz spaces”, Vladikavkaz. Mat. Zh., 21:4 (2019), 5–10
2018
12.
V. I. Chilin, K. K. Muminov, “Equivalence of Paths in Galilean Geometry”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 144 (2018), 3–16; Journal of Mathematical Sciences, 245:3 (2020), 297–310
A. F. Ber, V. I. Chilin, F. A. Sukochev, “Derivations on Banach $*$-ideals in von Neumann algebras”, Vladikavkaz. Mat. Zh., 20:2 (2018), 23–28
14.
B. R. Aminov, V. I. Chilin, “The uniqueness of the symmetric structure in ideals of compact operators”, Vladikavkaz. Mat. Zh., 20:1 (2018), 30–37
15.
A. A. Alimov, V. I. Chilin, “Derivations with values in an ideal $F$-spaces of measurable functions”, Vladikavkaz. Mat. Zh., 20:1 (2018), 21–29
2017
16.
B. R. Aminov, V. I. Chilin, “Isometries and Hermitian operators on complex symmetric sequence spaces”, Mat. Tr., 20:1 (2017), 21–42; Siberian Adv. Math., 27:4 (2017), 239–252
A. N. Azizov, V. I. Chilin, “Embedding of symmetric functional spaces”, Acta NUUz. Exact Sciences, 2017, no. 1, 54–59
18.
V. I. Chilin, K. K. Muminov, “The classification of paths in the Galilean geometry”, Taurida Journal of Computer Science Theory and Mathematics, 2017, no. 1, 95–111
19.
A. N. Azizov, V. I. Chilin, “Blum–Hanson ergodic theorem in a Banach lattices of sequences”, Vladikavkaz. Mat. Zh., 19:3 (2017), 3–10
2016
20.
M. A. Muratov, V. I. Chilin, “Topological algebras of measurable and locally measurable operators”, CMFD, 61 (2016), 115–163
V. I. Chilin, M. M. Yusupova, “Lattice normed lattices
with monotonically complete and order semicontinuous norm”, Dal'nevost. Mat. Zh., 14:2 (2014), 280–296
22.
A. F. Ber, G. B. Levitina, V. I. Chilin, “Derivations with values in quasi-normed bimodules of locally measurable operators”, Mat. Tr., 17:1 (2014), 3–18; Siberian Adv. Math., 25:3 (2015), 169–178
G. B. Levitina, V. I. Chilin, “Derivations on ideals in commutative $AW^*$-algebras”, Mat. Tr., 16:1 (2013), 63–88; Siberian Adv. Math., 24:1 (2014), 26–42
B. S. Zakirov, V. I. Chilin, “Noncommutative integration for traces with values in Kantorovich–Pinsker spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 10, 18–30; Russian Math. (Iz. VUZ), 54:10 (2010), 15–26
B. S. Zakirov, V. I. Chilin, “Ergodic theorems for contractions in Orlicz–Kantorovich lattices”, Sibirsk. Mat. Zh., 50:6 (2009), 1305–1318; Siberian Math. J., 50:6 (2009), 1027–1037
V. I. Chilin, I. G. Ganiev, K. K. Kudaibergenov, “The Gel'fand-Naĭmark theorem for $C^*$-algebras over a ring of measurable functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 2, 60–68; Russian Math. (Iz. VUZ), 52:2 (2008), 58–66
V. I. Chilin, I. G. Ganiev, K. K. Kudaibergenov, “GNS-representations of $C^*$-algebras over the ring of measurable function”, Vladikavkaz. Mat. Zh., 9:2 (2007), 33–39
M. A. Muratov, V. I. Chilin, “$*$-algebras of unbounded operators affiliated with a von Neumann algebra”, Zap. Nauchn. Sem. POMI, 326 (2005), 183–197; J. Math. Sci. (N. Y.), 140:3 (2007), 445–451
F. A. Sukochev, V. I. Chilin, A. F. Ber, “Derivations in Commutative Regular Algebras”, Mat. Zametki, 75:3 (2004), 453–454; Math. Notes, 75:3 (2004), 418–419
I. G. Ganiev, V. I. Chilin, “Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a Center-valued Trace”, Mat. Tr., 4:2 (2001), 27–41; Siberian Adv. Math., 12:4 (2002), 19–33
V. I. Chilin, I. G. Ganiev, “An individual ergodic theorem for contractions in the Banach–Kantorovich lattice $L_p(\widehat\nabla,\widehat\mu)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 7, 81–83; Russian Math. (Iz. VUZ), 44:7 (2000), 77–79
A. V. Krygin, F. A. Sukochev, V. I. Chilin, “Uniform convexity and local uniform convexity of symmetric spaces
of measurable operators”, Dokl. Akad. Nauk SSSR, 317:3 (1991), 555–558; Dokl. Math., 43:2 (1991), 445–448
37.
B. S. Zakirov, V. I. Chilin, “Abstract characterization of $EW^*$-algebras”, Funktsional. Anal. i Prilozhen., 25:1 (1991), 76–78; Funct. Anal. Appl., 25:1 (1991), 63–64
F. A. Sukochev, V. I. Chilin, “Symmetric spaces over semifinite von Neumann algebras”, Dokl. Akad. Nauk SSSR, 313:4 (1990), 811–815; Dokl. Math., 42:1 (1991), 97–101
F. A. Sukochev, V. I. Chilin, “Convergence in measure in regular noncommutative symmetric spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 9, 63–70; Soviet Math. (Iz. VUZ), 34:9 (1990), 78–87
1987
40.
F. A. Sukochev, V. I. Chilin, “Description of closed convex symmetric sets of measurable operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 10, 31–37; Soviet Math. (Iz. VUZ), 31:10 (1987), 39–46
T. A. Sarymsakov, O. Ya. Benderskii, V. I. Chilin, “Measures with values in semifields and their applications in probability theory”, Dokl. Akad. Nauk SSSR, 228:1 (1976), 41–44
Sh. A. Ayupov, V. I. Chilin, R. N. Ganikhodzhaev, K. K. Muminov, A. Artikbaev, B. S. Zakirov, A. Alimov, K. K. Kudaybergenov, F. Mukhamedov, U. Bekboev, I. Rakhimov, “To the memory of Inomjon Gulomjonovich Ganiev”, Vladikavkaz. Mat. Zh., 20:1 (2018), 98–102