Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2014, Volume 17, Number 1, Pages 3–18 (Mi mt265)  

This article is cited in 8 scientific papers (total in 8 papers)

Derivations with values in quasi-normed bimodules of locally measurable operators

A. F. Ber, G. B. Levitina, V. I. Chilin

National University of Uzbekistan named after M. Ulugbek, Faculty of Mathematics and Mechanics, Tashkent, Uzbekistan
Full-text PDF (250 kB) Citations (8)
References:
Abstract: We prove that every derivation acting on a von Neumann algebra $\mathcal M$ with values in a quasi-normed bimodule of locally measurable operators affiliated with $\mathcal M$ is necessarily inner.
Key words: derivation, von Neumann algebra, quasi-normed bimodule, locally measurable operators.
Received: 24.12.2013
English version:
Siberian Advances in Mathematics, 2015, Volume 25, Issue 3, Pages 169–178
DOI: https://doi.org/10.3103/S1055134415030025
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. F. Ber, G. B. Levitina, V. I. Chilin, “Derivations with values in quasi-normed bimodules of locally measurable operators”, Mat. Tr., 17:1 (2014), 3–18; Siberian Adv. Math., 25:3 (2015), 169–178
Citation in format AMSBIB
\Bibitem{BerLevChi14}
\by A.~F.~Ber, G.~B.~Levitina, V.~I.~Chilin
\paper Derivations with values in quasi-normed bimodules of locally measurable operators
\jour Mat. Tr.
\yr 2014
\vol 17
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/mt265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236359}
\transl
\jour Siberian Adv. Math.
\yr 2015
\vol 25
\issue 3
\pages 169--178
\crossref{https://doi.org/10.3103/S1055134415030025}
Linking options:
  • https://www.mathnet.ru/eng/mt265
  • https://www.mathnet.ru/eng/mt/v17/i1/p3
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :78
    References:41
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024