Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2014, Volume 17, Number 1, Pages 3–18 (Mi mt265)  

This article is cited in 8 scientific papers (total in 8 papers)

Derivations with values in quasi-normed bimodules of locally measurable operators

A. F. Ber, G. B. Levitina, V. I. Chilin

National University of Uzbekistan named after M. Ulugbek, Faculty of Mathematics and Mechanics, Tashkent, Uzbekistan
Full-text PDF (250 kB) Citations (8)
References:
Abstract: We prove that every derivation acting on a von Neumann algebra M with values in a quasi-normed bimodule of locally measurable operators affiliated with M is necessarily inner.
Key words: derivation, von Neumann algebra, quasi-normed bimodule, locally measurable operators.
Received: 24.12.2013
English version:
Siberian Advances in Mathematics, 2015, Volume 25, Issue 3, Pages 169–178
DOI: https://doi.org/10.3103/S1055134415030025
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. F. Ber, G. B. Levitina, V. I. Chilin, “Derivations with values in quasi-normed bimodules of locally measurable operators”, Mat. Tr., 17:1 (2014), 3–18; Siberian Adv. Math., 25:3 (2015), 169–178
Citation in format AMSBIB
\Bibitem{BerLevChi14}
\by A.~F.~Ber, G.~B.~Levitina, V.~I.~Chilin
\paper Derivations with values in quasi-normed bimodules of locally measurable operators
\jour Mat. Tr.
\yr 2014
\vol 17
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/mt265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236359}
\transl
\jour Siberian Adv. Math.
\yr 2015
\vol 25
\issue 3
\pages 169--178
\crossref{https://doi.org/10.3103/S1055134415030025}
Linking options:
  • https://www.mathnet.ru/eng/mt265
  • https://www.mathnet.ru/eng/mt/v17/i1/p3
  • This publication is cited in the following 8 articles:
    1. A. M. Bikchentaev, M. F. Darwish, M. A. Muratov, “Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. II”, Ann. Funct. Anal., 15:3 (2024)  crossref
    2. A. M. Bikchentaev, “The topologies of local convergence in measure on the algebras of measurable operators”, Siberian Math. J., 64:1 (2023), 13–21  mathnet  crossref  crossref  mathscinet
    3. A. Ber, J. Huang, G. Levitina, F. Sukochev, “Derivations with Values in the Ideal of $\tau $-Compact Operators Affiliated with a Semifinite von Neumann Algebra”, Commun. Math. Phys., 390:2 (2022), 577  crossref
    4. A. M. Bikchentaev, “Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra”, Ufa Math. J., 11:3 (2019), 3–10  mathnet  crossref  isi
    5. A. M. Bikchentaev, “Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra”, Siberian Math. J., 59:2 (2018), 243–251  mathnet  crossref  crossref  isi  elib
    6. A. A. Alimov, V. I. Chilin, “Differentsirovaniya so znacheniyami v idealnykh $F$-prostranstvakh izmerimykh funktsii”, Vladikavk. matem. zhurn., 20:1 (2018), 21–29  mathnet  crossref  elib
    7. A. F. Ber, V. I. Chilin, F. A. Sukochev, “Derivations on Banach $*$-ideals in von Neumann algebras”, Vladikavk. matem. zhurn., 20:2 (2018), 23–28  mathnet  crossref  elib
    8. A. Ber, J. Huang, G. Levitina, F. Sukochev, “Derivations with values in ideals of semifinite von Neumann algebras”, J. Funct. Anal., 272:12 (2017), 4984–4997  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :94
    References:56
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025