Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 144, Pages 3–16 (Mi into267)  

This article is cited in 2 scientific papers (total in 2 papers)

Equivalence of Paths in Galilean Geometry

V. I. Chilin, K. K. Muminov

National University of Uzbekistan named after M. Ulugbek, Tashkent
Full-text PDF (242 kB) Citations (2)
References:
Abstract: An explicit description of finite transcendence bases in differential fields of differential rational functions that are invariant under the action of Galilean transformation group in a real finite-dimensional space is presented. Necessary and sufficient conditions of the equivalence of paths in the $n$-dimensional Galilean space are obtained.
Keywords: Galilean space, differential invariant, transcendence basis, path in a finite-dimensional space.
English version:
Journal of Mathematical Sciences, 2020, Volume 245, Issue 3, Pages 297–310
DOI: https://doi.org/10.1007/s10958-020-04691-7
Bibliographic databases:
Document Type: Article
UDC: 512.74
MSC: 53A15, 53A55, 53B30
Language: Russian
Citation: V. I. Chilin, K. K. Muminov, “Equivalence of Paths in Galilean Geometry”, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 144, VINITI, M., 2018, 3–16; Journal of Mathematical Sciences, 245:3 (2020), 297–310
Citation in format AMSBIB
\Bibitem{ChiMum18}
\by V.~I.~Chilin, K.~K.~Muminov
\paper Equivalence of Paths in Galilean Geometry
\inbook Proceedings of the International Conference «Problems of Modern Topology and its Applications»
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 144
\pages 3--16
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3829866}
\zmath{https://zbmath.org/?q=an:07248459}
\transl
\jour Journal of Mathematical Sciences
\yr 2020
\vol 245
\issue 3
\pages 297--310
\crossref{https://doi.org/10.1007/s10958-020-04691-7}
Linking options:
  • https://www.mathnet.ru/eng/into267
  • https://www.mathnet.ru/eng/into/v144/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :78
    References:18
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024