|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2018, Volume 144, Pages 3–16
(Mi into267)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Equivalence of Paths in Galilean Geometry
V. I. Chilin, K. K. Muminov National University of Uzbekistan named after M. Ulugbek, Tashkent
Abstract:
An explicit description of finite transcendence bases in differential
fields of differential rational functions that are invariant under the
action of Galilean transformation group in a real finite-dimensional space
is presented. Necessary and sufficient conditions of the equivalence of
paths in the $n$-dimensional Galilean space are obtained.
Keywords:
Galilean space, differential invariant, transcendence basis, path
in a finite-dimensional space.
Citation:
V. I. Chilin, K. K. Muminov, “Equivalence of Paths in Galilean Geometry”, Proceedings of the International Conference «Problems of Modern Topology and its Applications», Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 144, VINITI, M., 2018, 3–16; Journal of Mathematical Sciences, 245:3 (2020), 297–310
Linking options:
https://www.mathnet.ru/eng/into267 https://www.mathnet.ru/eng/into/v144/p3
|
Statistics & downloads: |
Abstract page: | 226 | Full-text PDF : | 82 | References: | 20 | First page: | 17 |
|