Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2013, Volume 16, Number 1, Pages 63–88 (Mi mt250)  

This article is cited in 2 scientific papers (total in 2 papers)

Derivations on ideals in commutative $AW^*$-algebras

G. B. Levitina, V. I. Chilin

National University of Uzbekistan, Faculty of Mathematics and Mechanics, Tashkent, Uzbekistan
Full-text PDF (311 kB) Citations (2)
References:
Abstract: Let $\mathcal A$ be a commutative $AW^*$-algebra.We denote by $S(\mathcal A)$ the $*$-algebra of measurable operators that are affiliated with $\mathcal A$. For an ideal $\mathcal I$ in $\mathcal A$, let $s(\mathcal I)$ denote the support of $\mathcal I$. Let $\mathbb Y$ be a solid linear subspace in $S(\mathcal A)$. We find necessary and sufficient conditions for existence of nonzero band preserving derivations from $\mathcal I$ to $\mathbb Y$. We prove that no nonzero band preserving derivation from $\mathcal I$ to $\mathbb Y$ exists if either $\mathbb Y\subset\mathcal A$ or $\mathbb Y$ is a quasi-normed solid space. We also show that a nonzero band preserving derivation from $\mathcal I$ to $S(\mathcal A)$ exists if and only if the boolean algebra of projections in the $AW^*$-algebra $s(\mathcal I)\mathcal A$ is not $\sigma$-distributive.
Key words: Boolean algebra, commutative $AW^*$-algebra, ideal, derivation.
Received: 04.06.2012
English version:
Siberian Advances in Mathematics, 2014, Volume 24, Issue 1, Pages 26–42
DOI: https://doi.org/10.3103/S1055134414010040
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: G. B. Levitina, V. I. Chilin, “Derivations on ideals in commutative $AW^*$-algebras”, Mat. Tr., 16:1 (2013), 63–88; Siberian Adv. Math., 24:1 (2014), 26–42
Citation in format AMSBIB
\Bibitem{LevChi13}
\by G.~B.~Levitina, V.~I.~Chilin
\paper Derivations on ideals in commutative $AW^*$-algebras
\jour Mat. Tr.
\yr 2013
\vol 16
\issue 1
\pages 63--88
\mathnet{http://mi.mathnet.ru/mt250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3156674}
\transl
\jour Siberian Adv. Math.
\yr 2014
\vol 24
\issue 1
\pages 26--42
\crossref{https://doi.org/10.3103/S1055134414010040}
Linking options:
  • https://www.mathnet.ru/eng/mt250
  • https://www.mathnet.ru/eng/mt/v16/i1/p63
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :98
    References:60
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024