|
Vladikavkazskii Matematicheskii Zhurnal, 2014, Volume 16, Number 2, Pages 69–78
(Mi vmj506)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Laterally complete $C_\infty(Q)$-modules
V. I. Chilina, J. A. Karimovb a National University of Uzbekistan named after M. Ulugbek, Tashkent, Uzbekistan
b National University of Uzbekistan named after M. Ulugbek, Tashkent, Uzbekistan
Abstract:
Let $X$ be a regular laterally complete $C_\infty(Q)$-module and $\mathscr B$ be a Boolean algebra whose Stone space is $Q$. We introduce the passport $\Gamma(X)$ for $X$ consisting of uniquely defined partition of unity in $\mathscr B$ and set of pairwise different cardinal numbers. It is proved that $C_\infty(Q)$-modules $X$ and $Y$ are isomorphic if and only if $\Gamma(X)=\Gamma(Y)$.
Key words:
Hamel $C_\infty(Q)$-basis, homogeneous module, $\sigma$-finite dimensional module.
Received: 27.11.2012
Citation:
V. I. Chilin, J. A. Karimov, “Laterally complete $C_\infty(Q)$-modules”, Vladikavkaz. Mat. Zh., 16:2 (2014), 69–78
Linking options:
https://www.mathnet.ru/eng/vmj506 https://www.mathnet.ru/eng/vmj/v16/i2/p69
|
|