Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Logachov, Artem Vasil'evich

Statistics Math-Net.Ru
Total publications: 17
Scientific articles: 17
Presentations: 2

Number of views:
This page:597
Abstract pages:2775
Full texts:715
References:484
E-mail:

https://www.mathnet.ru/eng/person113622
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2023
1. E. V. Efremov, A. V. Logachov, “On the moderate deviation principle for $m$-dependent random variables with sublinear expectation”, Sib. Èlektron. Mat. Izv., 20:2 (2023),  961–980  mathnet
2. A. V. Logachov, A. A. Mogul'skii, “Moderate deviation principles for the trajectories of inhomogeneous random walks”, Sibirsk. Mat. Zh., 64:1 (2023),  133–151  mathnet; Siberian Math. J., 64:1 (2023), 111–127
2022
3. A. V. Logachov, A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models”, Probl. Peredachi Inf., 58:2 (2022),  48–65  mathnet
4. A. V. Logachov, A. A. Mogulskii, “Exponential tightness for integral – type functionals of centered independent differently distributed random variables”, Sib. Èlektron. Mat. Izv., 19:1 (2022),  273–284  mathnet  mathscinet 1
5. A. V. Logachov, A. A. Mogul'skii, “Large deviation principles for the processes admitting embedded compound renewal processes”, Sibirsk. Mat. Zh., 63:1 (2022),  145–166  mathnet  mathscinet; Siberian Math. J., 63:1 (2022), 119–137
2021
6. T. Konstantopoulos, A. V. Logachov, A. A. Mogulskii, S. G. Foss, “Limit theorems for the maximal path weight in a directed graph on the line with random weights of edges”, Probl. Peredachi Inf., 57:2 (2021),  71–89  mathnet; Problems Inform. Transmission, 57:2 (2021), 161–177  isi  scopus 1
7. A. V. Logachov, A. A. Mogulskii, “The moderate deviations principle for the trajectories of compound renewal processes on the half – line”, Sib. Èlektron. Mat. Izv., 18:2 (2021),  1189–1200  mathnet  isi
8. Q. Q. Zhou, A. V. Logachov, “Moderate deviations principle for independent random variables under sublinear expectations”, Sib. Èlektron. Mat. Izv., 18:2 (2021),  817–826  mathnet  isi 2
9. A. A. Borovkov, A. V. Logachov, A. A. Mogul'skii, “Chebyshev-type inequalities and large deviation principles”, Teor. Veroyatnost. i Primenen., 66:4 (2021),  718–733  mathnet  zmath; Theory Probab. Appl., 66:4 (2022), 570–581  scopus 2
2020
10. F. C. Klebaner, A. V. Logachov, A. A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Probl. Peredachi Inf., 56:1 (2020),  63–79  mathnet  elib; Problems Inform. Transmission, 56:1 (2020), 56–72  isi  scopus 2
11. A. V. Logachov, A. A. Mogulskii, “Local theorems for finite – dimensional increments of compound multidimensional arithmetic renewal processes with light tails”, Sib. Èlektron. Mat. Izv., 17 (2020),  1766–1786  mathnet 3
12. A. V. Logachov, Y. M. Suhov, N. D. Vvedenskaya, A. A. Yambartsev, “A remark on normalizations in a local large deviations principle for inhomogeneous birth – and – death process”, Sib. Èlektron. Mat. Izv., 17 (2020),  1258–1269  mathnet  isi 1
13. A. V. Logachov, A. A. Mogul'skii, “Exponential chebyshev inequalities for random graphons and their applications”, Sibirsk. Mat. Zh., 61:4 (2020),  880–900  mathnet  elib; Siberian Math. J., 61:4 (2020), 697–714  isi  scopus 6
2018
14. N. D. Vvedenskaya, A. V. Logachov, Yu. M. Suhov, A. A. Yambartsev, “A local large deviation principle for inhomogeneous birth-death processes”, Probl. Peredachi Inf., 54:3 (2018),  73–91  mathnet  elib; Problems Inform. Transmission, 54:3 (2018), 263–280  isi  scopus 5
2017
15. A. V. Logachov, S. Ya. Makhno, “Stochastic equations with discontinuous jump functions”, Mat. Tr., 20:1 (2017),  128–144  mathnet  elib; Siberian Adv. Math., 27:4 (2017), 263–273  scopus
2015
16. A. V. Logachov, E. I. Prokopenko, “Large deviation principle for integral functionals of a Markov process”, Sib. Èlektron. Mat. Izv., 12 (2015),  639–650  mathnet
2012
17. A. V. Logachov, “Large deviation principle for processes with Poisson noise term”, Theory Stoch. Process., 18(34):2 (2012),  59–76  mathnet  mathscinet 1

Presentations in Math-Net.Ru
1. Moderate Deviations Principles for Trajectories of Inhomogeneous Random Walks
Artem Logachev, Anatolii Mogul'skii
Borovkov Meeting
August 26, 2022 16:45
2. Chebyshev-type inequalities and large deviation principles
Alexander Borovkov, Anatoly Mogulskii, Artem Logachev
International Conference "Theory of Probability and Its Applications: P. L. Chebyshev – 200" (The 6th International Conference on Stochastic Methods)
May 17, 2021 12:40   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024