Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2021, Volume 66, Issue 4, Pages 718–733
DOI: https://doi.org/10.4213/tvp5498
(Mi tvp5498)
 

This article is cited in 2 scientific papers (total in 2 papers)

Chebyshev-type inequalities and large deviation principles

A. A. Borovkov, A. V. Logachov, A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (454 kB) Citations (2)
References:
Abstract: Let $\xi_1,\xi_2,\dots$ be a sequence of independent copies of a random variable (r.v.) $\xi$, ${S_n=\sum_{j=1}^n\xi_j}$, $A(\lambda)=\ln\mathbf{E}e^{\lambda\xi}$, $\Lambda(\alpha)=\sup_\lambda(\alpha\lambda-A(\lambda))$ is the Legendre transform of $A(\lambda)$. In this paper, which is partially a review to some extent, we consider generalization of the exponential Chebyshev-type inequalities $\mathbf{P}(S_n\geq\alpha n)\leq\exp\{-n\Lambda(\alpha)\}$, $\alpha\geq\mathbf{E}\xi$, for the following three cases: I. Sums of random vectors, II. stochastic processes (the trajectories of random walks), and III. random fields associated with Erdős–Rényi graphs with weights. It is shown that these generalized Chebyshev-type inequalities enable one to get exponentially unimprovable upper bounds for the probabilities to hit convex sets and also to prove the large deviation principles for objects mentioned in I–III.
Keywords: exponential Chebyshev-type inequality, large deviation principle, local large deviation principle, random walk, random field, Erdős–Rényi graphs.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences 0314-2016-0008
This work was supported by Program I.1.3 of fundamental scientific research of the Siberian Branch of the Russian Academy of Sciences (project 0314-2016-0008).
Received: 12.05.2021
Accepted: 10.08.2021
English version:
Theory of Probability and its Applications, 2022, Volume 66, Issue 4, Pages 570–581
DOI: https://doi.org/10.1137/S0040585X97T990629
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Borovkov, A. V. Logachov, A. A. Mogul'skii, “Chebyshev-type inequalities and large deviation principles”, Teor. Veroyatnost. i Primenen., 66:4 (2021), 718–733; Theory Probab. Appl., 66:4 (2022), 570–581
Citation in format AMSBIB
\Bibitem{BorLogMog21}
\by A.~A.~Borovkov, A.~V.~Logachov, A.~A.~Mogul'skii
\paper Chebyshev-type inequalities and large deviation principles
\jour Teor. Veroyatnost. i Primenen.
\yr 2021
\vol 66
\issue 4
\pages 718--733
\mathnet{http://mi.mathnet.ru/tvp5498}
\crossref{https://doi.org/10.4213/tvp5498}
\zmath{https://zbmath.org/?q=an:7481227}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 66
\issue 4
\pages 570--581
\crossref{https://doi.org/10.1137/S0040585X97T990629}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129682227}
Linking options:
  • https://www.mathnet.ru/eng/tvp5498
  • https://doi.org/10.4213/tvp5498
  • https://www.mathnet.ru/eng/tvp/v66/i4/p718
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :67
    References:46
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024