Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2012, Volume 18(34), Issue 2, Pages 59–76 (Mi thsp30)  

This article is cited in 1 scientific paper (total in 1 paper)

Large deviation principle for processes with Poisson noise term

A. V. Logachov

74, R. Luxemburgh Str., Donetsk 83114, Ukraine
Full-text PDF (333 kB) Citations (1)
References:
Abstract: Let $\tilde{\nu}_n(du,dt)$ be a centered Poisson measure with the parameter $n\Pi(du)dt,$ and let $a_n(t,\omega)$ and $f_n(u,t,\omega)$ be stochastic processes. The large deviation principle for the sequence $\eta_n(t)=x_0+\int\limits_0^t a_n(s)ds+\frac{1}{\sqrt{ n}\varphi(n)}\int\limits_0^t\int f_n(u,s)\tilde{\nu}_n(du,ds)$ is proved. As examples, the large deviation principles for the normalized integral of a telegraph signal and for stochastic differential equations with periodic coefficients are obtained.
Keywords: Large deviations, rate functional, Poisson measure, telegraph signal process.
Bibliographic databases:
Document Type: Article
MSC: Primary 60H10; Secondary 60H20
Language: English
Citation: A. V. Logachov, “Large deviation principle for processes with Poisson noise term”, Theory Stoch. Process., 18(34):2 (2012), 59–76
Citation in format AMSBIB
\Bibitem{Log12}
\by A.~V.~Logachov
\paper Large deviation principle for processes with Poisson noise term
\jour Theory Stoch. Process.
\yr 2012
\vol 18(34)
\issue 2
\pages 59--76
\mathnet{http://mi.mathnet.ru/thsp30}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3124775}
Linking options:
  • https://www.mathnet.ru/eng/thsp30
  • https://www.mathnet.ru/eng/thsp/v18/i2/p59
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :65
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024