Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, Volume 17, Pages 1766–1786
DOI: https://doi.org/10.33048/semi.2020.17.120
(Mi semr1314)
 

This article is cited in 3 scientific papers (total in 3 papers)

Probability theory and mathematical statistics

Local theorems for finite – dimensional increments of compound multidimensional arithmetic renewal processes with light tails

A. V. Logachovabcd, A. A. Mogulskiiab

a Lab. of Probability Theory and Math. Statistics, Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
c Dep. of High Math., Siberian State University of Geosystems and Technologies, 10, Plahotnogo str., Novosibirsk, 630108, Russia
d Novosibirsk State University of Economics and Management, 56, Kamenskaya str., Novosibirsk, 630099, Russia
Full-text PDF (629 kB) Citations (3)
References:
Abstract: We continue to study the compound renewal processes under the Cramèr moment condition, which was started by A.A. Borovkov and A.A. Mogulskii (2013). In the present paper we study arithmetic multidimensional compound renewal process, for which the "control – ling" random vector $\xi=(\tau,\zeta)$ ($\tau>0$ determines the distance between the jumps, $\zeta$ determines the value of jumps of the compound renewal process) has an arithmetic distribution with light tails. For these processes we propose wide conditions (close to necessary), under which we can find exact asymptotics in local limit theorems for finite – dimensional increments.
Keywords: compound multidimensional arithmetic renewal process, large deviations, moderate deviations, renewal measure, Cramer’s condition, rate function, local theorems for finite – dimensional increments.
Funding agency Grant number
Russian Science Foundation 18-11-00129
Received April 9, 2020, published October 26, 2020
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: 60K05, 60F10
Language: Russian
Citation: A. V. Logachov, A. A. Mogulskii, “Local theorems for finite – dimensional increments of compound multidimensional arithmetic renewal processes with light tails”, Sib. Èlektron. Mat. Izv., 17 (2020), 1766–1786
Citation in format AMSBIB
\Bibitem{LogMog20}
\by A.~V.~Logachov, A.~A.~Mogulskii
\paper Local theorems for finite -- dimensional increments of compound multidimensional arithmetic renewal processes with light tails
\jour Sib. \`Elektron. Mat. Izv.
\yr 2020
\vol 17
\pages 1766--1786
\mathnet{http://mi.mathnet.ru/semr1314}
\crossref{https://doi.org/10.33048/semi.2020.17.120}
Linking options:
  • https://www.mathnet.ru/eng/semr1314
  • https://www.mathnet.ru/eng/semr/v17/p1766
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024