Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2020, Volume 56, Issue 1, Pages 63–79
DOI: https://doi.org/10.31857/S0555292320010064
(Mi ppi2312)
 

This article is cited in 2 scientific papers (total in 2 papers)

Large Systems

Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line

F. C. Klebanera, A. V. Logachovbcde, A. A. Mogulskiieb

a School of Mathematics, Monash University, Melbourne, Australia
b Laboratory of Applied Probability, Novosibirsk State University, Novosibirsk, Russia
c Siberian State University of Geosystems and Technologies, Novosibirsk, Russia
d Statistics Division, Novosibirsk State University of Economics and Management, Novosibirsk, Russia
e Laboratory of Probability Theory and Mathematical Statistics, Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (213 kB) Citations (2)
References:
Abstract: We establish an extended large deviation principle for processes with independent and stationary increments on the half-line under the Cramer moment condition in the space of functions of bounded variation without discontinuities of the second kind equipped with the Borovkov metric.
Keywords: compound Poisson process, processes with independent increments, Cramer condition, rate function, large deviation principle, extended large deviation principle, bounded variation functions, space of functions without discontinuities of the second kind, Borovkov metric.
Funding agency Grant number
Australian Research Council DP150102758
Siberian Branch of Russian Academy of Sciences 1.1.3, номер проекта 0314-2016-0008
Russian Foundation for Basic Research 18-01-00101_а
The research of F.C. Klebaner was supported in part by the Australian Research Council grant DP150102758. The research of A.V. Logachov was supported in part by the Program of Fundamental Scientific Research of the Siberian Branch of the Russian Academy of Sciences no. 1.1.3, project no. 0314-2016-0008. The research of A.A. Mogulskii was supported in part by the Russian Foundation for Basic Research, project no. 18-01-00101.
Received: 26.12.2019
Revised: 28.01.2020
Accepted: 29.01.2020
English version:
Problems of Information Transmission, 2020, Volume 56, Issue 1, Pages 56–72
DOI: https://doi.org/10.1134/S0032946020010068
Bibliographic databases:
Document Type: Article
UDC: 621.391.1 : 519.2
Language: Russian
Citation: F. C. Klebaner, A. V. Logachov, A. A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Probl. Peredachi Inf., 56:1 (2020), 63–79; Problems Inform. Transmission, 56:1 (2020), 56–72
Citation in format AMSBIB
\Bibitem{KleLogMog20}
\by F.~C.~Klebaner, A.~V.~Logachov, A.~A.~Mogulskii
\paper Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line
\jour Probl. Peredachi Inf.
\yr 2020
\vol 56
\issue 1
\pages 63--79
\mathnet{http://mi.mathnet.ru/ppi2312}
\crossref{https://doi.org/10.31857/S0555292320010064}
\elib{https://elibrary.ru/item.asp?id=43265472}
\transl
\jour Problems Inform. Transmission
\yr 2020
\vol 56
\issue 1
\pages 56--72
\crossref{https://doi.org/10.1134/S0032946020010068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000526343800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083482170}
Linking options:
  • https://www.mathnet.ru/eng/ppi2312
  • https://www.mathnet.ru/eng/ppi/v56/i1/p63
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :19
    References:26
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024