Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1974, Volume 29, Issue 5, Pages 1–70
DOI: https://doi.org/10.1070/RM1974v029n05ABEH001295
(Mi rm4416)
 

This article is cited in 85 scientific papers (total in 85 papers)

Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed

V. Ya. Ivrii, V. M. Petkov
References:
Abstract: In this article we study the $C^\infty$-well-posedness of the non-characteristic Cauchy problem for hyperbolic equations with characteristic roots of variable multiplicity. We obtain a necessary condition for the Cauchy problem with arbitrary lower order terms to be well-posed, and also a necessary condition for the smoothness of the solution to be independent of the lower order terms. For equations with characteristic roots of an arbitrary variable multiplicity we obtain necessary conditions on the lower order terms for the Cauchy problem to be well-posed. All the proofs are based on a single method: the construction of asymptotic solutions.
Received: 15.04.1973
Russian version:
Uspekhi Matematicheskikh Nauk, 1974, Volume 29, Issue 5(179), Pages 3–70
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35L10, 35B40, 35B65
Language: English
Original paper language: Russian
Citation: V. Ya. Ivrii, V. M. Petkov, “Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed”, Uspekhi Mat. Nauk, 29:5(179) (1974), 3–70; Russian Math. Surveys, 29:5 (1974), 1–70
Citation in format AMSBIB
\Bibitem{IvrPet74}
\by V.~Ya.~Ivrii, V.~M.~Petkov
\paper Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed
\jour Uspekhi Mat. Nauk
\yr 1974
\vol 29
\issue 5(179)
\pages 3--70
\mathnet{http://mi.mathnet.ru/rm4416}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=427843}
\zmath{https://zbmath.org/?q=an:0312.35049}
\transl
\jour Russian Math. Surveys
\yr 1974
\vol 29
\issue 5
\pages 1--70
\crossref{https://doi.org/10.1070/RM1974v029n05ABEH001295}
Linking options:
  • https://www.mathnet.ru/eng/rm4416
  • https://doi.org/10.1070/RM1974v029n05ABEH001295
  • https://www.mathnet.ru/eng/rm/v29/i5/p3
    Cycle of papers
    This publication is cited in the following 85 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:850
    Russian version PDF:327
    English version PDF:40
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024