1. Guy Métivier, “L 2 well-posed Cauchy problems and symmetrizability of first order systems”, Journal de l'École polytechnique — Mathématiques, 1 (2014), 39  crossref
  2. Seiichiro Wakabayashi, “On the Cauchy Problem for Second-Order Hyperbolic Operators with the Coefficients of Their Principal Parts Depending Only on the Time Variable”, FE, 55:1 (2012), 99  crossref
  3. Dennis Rätzel, Sergio Rivera, Frederic Schuller, “Geometry of physical dispersion relations”, Phys. Rev. D, 83:4 (2011)  crossref
  4. Enrico Bernardi, Tatsuo Nishitani, “On the Cauchy problem for noneffectively hyperbolic operators: The Gevrey 4 well-posedness”, Kyoto J. Math., 51:4 (2011)  crossref
  5. Anela Kumbaro, Michaël Ndjinga, “Influence of Interfacial Pressure Term on the Hyperbolicity of a General Multifluid Model”, The Journal of Computational Multiphase Flows, 3:3 (2011), 177  crossref
  6. Valeri V. Kucherenko, Andriy Kryvko, Recent Trends in Toeplitz and Pseudodifferential Operators, 2010, 147  crossref
  7. Enrico Bernardi, Antonio Bove, Vesselin Petkov, “Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity”, Journées équations aux dérivées partielles, 2010, 1  crossref
  8. Seiichiro WAKABAYASHI, “On the Cauchy problem for hyperbolic operators of second order whose coefficients depend only on the time variable”, J. Math. Soc. Japan, 62:1 (2010)  crossref
  9. V. V. Kucherenko, A. V. Krivko, “Existence Theorem for Hyperbolic Systems with a Multiplicity Change Point of at Most the Third Order”, Math. Notes, 85:1 (2009), 128–132  mathnet  crossref  crossref  mathscinet  zmath  isi
  10. Tatsuo Nishitani, Progress in Nonlinear Differential Equations and Their Applications, 78, Advances in Phase Space Analysis of Partial Differential Equations, 2009, 217  crossref
  11. Seiichiro Wakabayashi, “On the Cauchy Problem for Hyperbolic Operators with Nearly Constant Coefficient Principal Part”, FE, 51:3 (2008), 395  crossref
  12. Massimo CICOGNANI, Fumihiko HIROSAWA, Michael REISSIG, “The Log-effect for p-evolution type models”, J. Math. Soc. Japan, 60:3 (2008)  crossref
  13. A. V. Krivko, V. V. Kucherenko, “On real hyperbolic systems with characteristics of variable multiplicity”, Dokl Math, 75:1 (2007), 83  crossref  mathscinet  isi
  14. Tatsuo Nishitani, Progress in Nonlinear Differential Equations and Their Applications, 69, Phase Space Analysis of Partial Differential Equations, 2006, 217  crossref
  15. MICHAEL DREHER, INGO WITT, “ENERGY ESTIMATES FOR WEAKLY HYPERBOLIC SYSTEMS OF THE FIRST ORDER”, Commun. Contemp. Math, 07:06 (2005), 809  crossref
  16. Michael Dreher, Ingo Witt, Operator Theory: Advances and Applications, 159, New Trends in the Theory of Hyperbolic Equations, 2005, 449  crossref
  17. Ferruccio Colombini, Mariagrazia Di Flaviano, Tatsuo Nishitani, Partial Differential Equations and Mathematical Physics, 2003, 73  crossref
  18. Yujiro Ohya, Jean Leray '99 Conference Proceedings, 2003, 97  crossref
  19. Michael Dreher, Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations, 2003, 157  crossref
  20. Ingo Witt, Michael Dreher, Hyperbolic Differential Operators And Related Problems, 2003  crossref
Previous
1
2
3
4
5
Next