-
M. Dreher, M. Reissig, International Society for Analysis, Applications and Computation, 2, Partial Differential and Integral Equations, 1999, 303
-
Tatsuo Nishitani, “Hyperbolicity of two by two systems with two independent variables”, Communications in Partial Differential Equations, 23:5-6 (1998), 1061
-
G. R. Oganesyan, E. A. Taroyan, “Ustoichivost zadachi Koshi dlya slabo giperbolicheskikh uravnenii chetvertogo poryadka”, Uch. zapiski EGU, ser. Fizika i Matematika, 1997, no. 1, 89–93
-
Enrico BERNARDI, Antonio BOVE, “Geometric transition for a class of hyperbolic operators with double characteristics”, Jpn. j. math, 23:1 (1997), 1
-
Enrico Bernardi, Antonio Bove, Partial Differential Operators and Mathematical Physics, 1995, 21
-
Enrico Bernardi, Antonio Bove, “Geometric transition for a class of hyperbolic operators with double characteristics”, Proc. Japan Acad. Ser. A Math. Sci., 71:4 (1995)
-
V. Ya. Ivrii, Encyclopaedia of Mathematical Sciences, 33, Partial Differential Equations IV, 1993, 149
-
Enrico Bernardi, Antonio Bove, Tatsuo Nishitani, “Levi conditions for hyperbolic operators with a stratified multiple variety”, Proc. Japan Acad. Ser. A Math. Sci., 68:3 (1992)
-
Tatsuo Nishitani, Lecture Notes in Mathematics, 1505, The Hyperbolic Cauchy Problem, 1991, 71
-
E. Bernardi, A. Bove, “Necessary and sufficient conditions for the well-posedness of the Cauchy problem for a class of hyperbolic operators with triple characteristics”, J Anal Math, 54:1 (1990), 21
-
E. Bernardi, A. Bove, “Propagation of Gevrey singularities for a class of operators
with triple characteristics, I”, Duke Math. J., 60:1 (1990)
-
E. Bernardi, A. Bove, “Propagation of Gevrey singularities for a class of operators
with triple characteristics, II”, Duke Math. J., 60:1 (1990)
-
Katsuju IGARI, “The characteristic Cauchy problem at a point where the multiplicity varies”, Jpn. j. math, 16:1 (1990), 119
-
Enrico Jannelli, “On the Symmetrization of the Principal Symbol of Hyperbolic Equations”, Communications in Partial Differential Equations, 14:12 (1989), 1617
-
Enrico Bernardi, Antonio Bove, “Geometric results for a class of hyperbolic operators with double characteristics”, Communications in Partial Differential Equations, 13:1 (1988), 61
-
E. Bernardi, A. Bove, C. Parenti, Lecture Notes in Mathematics, 1340, Calculus of Variations and Partial Differential Equations, 1988, 23
-
Enrico Bernardi, Antonio Bove, “The Cauchy problem for a class of hyperbolic operators with triple characteristics”, Proc. Japan Acad. Ser. A Math. Sci., 64:10 (1988)
-
Tatsuo Nishitani, “Système involutif d'opérateurs effectivement hyperboliques”, Proc. Japan Acad. Ser. A Math. Sci., 63:4 (1987)
-
V. V. Kucherenko, L. Yu. Motylev, “The limits of applicability of the canonical operator method for nonstrictly hyperbolic equations with nonsmooth characteristics”, Math. USSR-Izv., 29:1 (1987), 95–117
-
Tatsuo NISHITANI, Hyperbolic Equations and Related Topics, 1986, 235