1. M. Dreher, M. Reissig, International Society for Analysis, Applications and Computation, 2, Partial Differential and Integral Equations, 1999, 303  crossref
  2. Tatsuo Nishitani, “Hyperbolicity of two by two systems with two independent variables”, Communications in Partial Differential Equations, 23:5-6 (1998), 1061  crossref
  3. G. R. Oganesyan, E. A. Taroyan, “Ustoichivost zadachi Koshi dlya slabo giperbolicheskikh uravnenii chetvertogo poryadka”, Uch. zapiski EGU, ser. Fizika i Matematika, 1997, no. 1, 89–93  mathnet
  4. Enrico BERNARDI, Antonio BOVE, “Geometric transition for a class of hyperbolic operators with double characteristics”, Jpn. j. math, 23:1 (1997), 1  crossref
  5. Enrico Bernardi, Antonio Bove, Partial Differential Operators and Mathematical Physics, 1995, 21  crossref
  6. Enrico Bernardi, Antonio Bove, “Geometric transition for a class of hyperbolic operators with double characteristics”, Proc. Japan Acad. Ser. A Math. Sci., 71:4 (1995)  crossref
  7. V. Ya. Ivrii, Encyclopaedia of Mathematical Sciences, 33, Partial Differential Equations IV, 1993, 149  crossref
  8. Enrico Bernardi, Antonio Bove, Tatsuo Nishitani, “Levi conditions for hyperbolic operators with a stratified multiple variety”, Proc. Japan Acad. Ser. A Math. Sci., 68:3 (1992)  crossref
  9. Tatsuo Nishitani, Lecture Notes in Mathematics, 1505, The Hyperbolic Cauchy Problem, 1991, 71  crossref
  10. E. Bernardi, A. Bove, “Necessary and sufficient conditions for the well-posedness of the Cauchy problem for a class of hyperbolic operators with triple characteristics”, J Anal Math, 54:1 (1990), 21  crossref  mathscinet  zmath  isi
  11. E. Bernardi, A. Bove, “Propagation of Gevrey singularities for a class of operators with triple characteristics, I”, Duke Math. J., 60:1 (1990)  crossref
  12. E. Bernardi, A. Bove, “Propagation of Gevrey singularities for a class of operators with triple characteristics, II”, Duke Math. J., 60:1 (1990)  crossref
  13. Katsuju IGARI, “The characteristic Cauchy problem at a point where the multiplicity varies”, Jpn. j. math, 16:1 (1990), 119  crossref
  14. Enrico Jannelli, “On the Symmetrization of the Principal Symbol of Hyperbolic Equations”, Communications in Partial Differential Equations, 14:12 (1989), 1617  crossref
  15. Enrico Bernardi, Antonio Bove, “Geometric results for a class of hyperbolic operators with double characteristics”, Communications in Partial Differential Equations, 13:1 (1988), 61  crossref
  16. E. Bernardi, A. Bove, C. Parenti, Lecture Notes in Mathematics, 1340, Calculus of Variations and Partial Differential Equations, 1988, 23  crossref
  17. Enrico Bernardi, Antonio Bove, “The Cauchy problem for a class of hyperbolic operators with triple characteristics”, Proc. Japan Acad. Ser. A Math. Sci., 64:10 (1988)  crossref
  18. Tatsuo Nishitani, “Système involutif d'opérateurs effectivement hyperboliques”, Proc. Japan Acad. Ser. A Math. Sci., 63:4 (1987)  crossref
  19. V. V. Kucherenko, L. Yu. Motylev, “The limits of applicability of the canonical operator method for nonstrictly hyperbolic equations with nonsmooth characteristics”, Math. USSR-Izv., 29:1 (1987), 95–117  mathnet  crossref  mathscinet  zmath
  20. Tatsuo NISHITANI, Hyperbolic Equations and Related Topics, 1986, 235  crossref
Previous
1
2
3
4
5
Next