Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Minabutdinov, Aleksei Rafailovich

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8
Presentations: 5

Number of views:
This page:300
Abstract pages:1909
Full texts:502
References:367
E-mail: , ,

https://www.mathnet.ru/eng/person59309
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2019
1. A. R. Minabutdinov, “Limiting curves for the dyadic odometer”, Zap. Nauchn. Sem. POMI, 481 (2019),  74–86  mathnet
2016
2. A. R. Minabutdinov, “Limiting curves for polynomial adic systems”, Zap. Nauchn. Sem. POMI, 448 (2016),  177–200  mathnet  mathscinet; J. Math. Sci. (N. Y.), 224:2 (2017), 286–303  scopus 2
2015
3. A. A. Lodkin, A. R. Minabutdinov, “Limiting curves for the Pascal adic transformation”, Zap. Nauchn. Sem. POMI, 437 (2015),  145–183  mathnet  mathscinet; J. Math. Sci. (N. Y.), 216:1 (2016), 94–119  scopus 4
4. A. R. Minabutdinov, “A higher-order asymptotic expansion of the Krawtchouk polynomials”, Zap. Nauchn. Sem. POMI, 436 (2015),  174–188  mathnet  mathscinet; J. Math. Sci. (N. Y.), 215:6 (2016), 738–747  scopus 3
5. A. R. Minabutdinov, “Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure”, Zap. Nauchn. Sem. POMI, 432 (2015),  224–260  mathnet; J. Math. Sci. (N. Y.), 209:6 (2015), 953–978  scopus 2
2013
6. A. R. Minabutdinov, I. E. Manaev, “The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic”, Zap. Nauchn. Sem. POMI, 411 (2013),  135–147  mathnet  mathscinet; J. Math. Sci. (N. Y.), 196:2 (2014), 192–198  scopus 6
2012
7. A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$”, Zap. Nauchn. Sem. POMI, 403 (2012),  95–102  mathnet  mathscinet; J. Math. Sci. (N. Y.), 190:3 (2013), 459–463  scopus 4
2010
8. A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Asymptotic behavior of the scaling entropy of the Pascal adic transformation”, Zap. Nauchn. Sem. POMI, 378 (2010),  58–72  mathnet; J. Math. Sci. (N. Y.), 174:1 (2011), 28–35  scopus 7

Presentations in Math-Net.Ru
1. Limiting curves for the dyadic odometer and the generalized Trollope-Delange formula
A. R. Minabutdinov
St. Petersburg Seminar on Representation Theory and Dynamical Systems
March 21, 2018 17:00
2. Limit curves for a class of polynomial adic automorphisms
A. R. Minabutdinov
St. Petersburg Seminar on Representation Theory and Dynamical Systems
November 30, 2016 17:30
3. Random deviations of ergodic sums for the Pascal automorphism
A. R. Minabutdinov
St. Petersburg Seminar on Representation Theory and Dynamical Systems
February 11, 2015 17:00
4. The Kruskal-Katona function, Conway sequence, Takagi curve, and Pascal automorphism
A. R. Minabutdinov, I. E. Manaev
St. Petersburg Seminar on Representation Theory and Dynamical Systems
March 27, 2013 17:00
5. Ergodic properties of the Pascal automorphisms
I. E. Manaev, A. R. Minabutdinov
St. Petersburg Seminar on Representation Theory and Dynamical Systems
May 12, 2010 12:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024