Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 448, Pages 177–200 (Mi znsl6311)  

This article is cited in 2 scientific papers (total in 2 papers)

Limiting curves for polynomial adic systems

A. R. Minabutdinov

National Research University "Higher School of Economics", St. Petersburg Branch, St. Petersburg, Russia
Full-text PDF (820 kB) Citations (2)
References:
Abstract: We prove the existence of limiting curves (describing deviations in the ergodic theorem) for cylinder functions for polynomial adic systems. For a general ergodic measure-preserving transformation and a summable function, we give a necessary condition for a limiting curve to exist. Our work generalizes results by E. Janvresse, T. de la Rue, and Y. Velenik.
Key words and phrases: polynomial adic systems, ergodic theorem, deviations in ergodic theorem.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00373
Received: 25.09.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 2, Pages 286–303
DOI: https://doi.org/10.1007/s10958-017-3415-3
Bibliographic databases:
Document Type: Article
UDC: 517.987.5+519.21
Language: Russian
Citation: A. R. Minabutdinov, “Limiting curves for polynomial adic systems”, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Zap. Nauchn. Sem. POMI, 448, POMI, St. Petersburg, 2016, 177–200; J. Math. Sci. (N. Y.), 224:2 (2017), 286–303
Citation in format AMSBIB
\Bibitem{Min16}
\by A.~R.~Minabutdinov
\paper Limiting curves for polynomial adic systems
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 448
\pages 177--200
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3576258}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 2
\pages 286--303
\crossref{https://doi.org/10.1007/s10958-017-3415-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019693472}
Linking options:
  • https://www.mathnet.ru/eng/znsl6311
  • https://www.mathnet.ru/eng/znsl/v448/p177
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :34
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024