Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 403, Pages 95–102 (Mi znsl5250)  

This article is cited in 4 scientific papers (total in 4 papers)

A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$

A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov

St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
Full-text PDF (237 kB) Citations (4)
References:
Abstract: A class of concatenation dynamical systems is introduced. Various automorphisms, including the Morse and Pascal automorphisms, can be regarded as automorphisms of this class. In this realization, a natural number-theoretic interpretation of the problem whether the spectrum of an automorphism is discrete arises. In particular, the known character of the asymptotic behavior of the function $s_2(n)$ allows one to immediately see the nondiscreteness of the spectrum of the Morse automorphism and to give a new formulation of the discreteness problem in the case of the Pascal automorphism.
Key words and phrases: concatenation graph, adic automorphism, Pascal automorphism, Morse automorphism, sum-of-digits function, discrete spectrum.
Received: 15.10.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 190, Issue 3, Pages 459–463
DOI: https://doi.org/10.1007/s10958-013-1261-5
Bibliographic databases:
Document Type: Article
UDC: 517.987.5
Language: Russian
Citation: A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$”, Representation theory, dynamical systems, combinatorial methods. Part XXI, Zap. Nauchn. Sem. POMI, 403, POMI, St. Petersburg, 2012, 95–102; J. Math. Sci. (N. Y.), 190:3 (2013), 459–463
Citation in format AMSBIB
\Bibitem{LodManMin12}
\by A.~A.~Lodkin, I.~E.~Manaev, A.~R.~Minabutdinov
\paper A realization of the Pascal automorphism in the concatenation graph, and the function~$s_2(n)$
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXI
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 403
\pages 95--102
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3029582}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 190
\issue 3
\pages 459--463
\crossref{https://doi.org/10.1007/s10958-013-1261-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880645469}
Linking options:
  • https://www.mathnet.ru/eng/znsl5250
  • https://www.mathnet.ru/eng/znsl/v403/p95
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :74
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024