|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 411, Pages 135–147
(Mi znsl5637)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic
A. R. Minabutdinov, I. E. Manaev St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
Abstract:
We study interrelations between the Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic. Using the results of the current paper and, in particular, the convergence of the sequence $2a(n)-n$, where $a(n)$ is the Conway sequence, to the family of generalized Takagi curves, we prove a similar result for the Kruskal–Katona function. Moreover, a recursive method of computing the values of the Kruskal–Katona function is suggested.
Key words and phrases:
Pascal adic, Kruscal–Katona function, Conway sequence, Takagi curve.
Received: 07.03.2013
Citation:
A. R. Minabutdinov, I. E. Manaev, “The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic”, Representation theory, dynamical systems, combinatorial methods. Part XXII, Zap. Nauchn. Sem. POMI, 411, POMI, St. Petersburg, 2013, 135–147; J. Math. Sci. (N. Y.), 196:2 (2014), 192–198
Linking options:
https://www.mathnet.ru/eng/znsl5637 https://www.mathnet.ru/eng/znsl/v411/p135
|
Statistics & downloads: |
Abstract page: | 374 | Full-text PDF : | 133 | References: | 72 |
|