Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 411, Pages 135–147 (Mi znsl5637)  

This article is cited in 6 scientific papers (total in 6 papers)

The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic

A. R. Minabutdinov, I. E. Manaev

St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
References:
Abstract: We study interrelations between the Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic. Using the results of the current paper and, in particular, the convergence of the sequence $2a(n)-n$, where $a(n)$ is the Conway sequence, to the family of generalized Takagi curves, we prove a similar result for the Kruskal–Katona function. Moreover, a recursive method of computing the values of the Kruskal–Katona function is suggested.
Key words and phrases: Pascal adic, Kruscal–Katona function, Conway sequence, Takagi curve.
Received: 07.03.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 196, Issue 2, Pages 192–198
DOI: https://doi.org/10.1007/s10958-013-1652-7
Bibliographic databases:
Document Type: Article
UDC: 517.987.5
Language: Russian
Citation: A. R. Minabutdinov, I. E. Manaev, “The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic”, Representation theory, dynamical systems, combinatorial methods. Part XXII, Zap. Nauchn. Sem. POMI, 411, POMI, St. Petersburg, 2013, 135–147; J. Math. Sci. (N. Y.), 196:2 (2014), 192–198
Citation in format AMSBIB
\Bibitem{MinMan13}
\by A.~R.~Minabutdinov, I.~E.~Manaev
\paper The Kruskal--Katona function, Conway sequence, Takagi curve, and Pascal adic
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXII
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 411
\pages 135--147
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3048274}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 196
\issue 2
\pages 192--198
\crossref{https://doi.org/10.1007/s10958-013-1652-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897046654}
Linking options:
  • https://www.mathnet.ru/eng/znsl5637
  • https://www.mathnet.ru/eng/znsl/v411/p135
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :133
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024