Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Konygin, Anton Vladimirovich

Statistics Math-Net.Ru
Total publications: 10
Scientific articles: 10

Number of views:
This page:749
Abstract pages:2659
Full texts:772
References:488
Candidate of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person48093
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/822006

Publications in Math-Net.Ru Citations
2021
1. A. V. Konygin, “On à question concerning the tensor product of modules”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  103–109  mathnet  elib
2019
2. A. V. Konygin, “On primitive permutation groups with the stabilizer of two points normal in the stabilizer of one of them: The case when the socle is a power of a group $E_8(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  88–98  mathnet  elib 1
2018
3. A. V. Konygin, “On conjugacy of $\mathrm{Alt}_5$-subgroups of Borovik subgroup of group $E_8(q)$”, Sib. Èlektron. Mat. Izv., 15 (2018),  797–800  mathnet
2016
4. D. N. Gainanov, A. V. Konygin, V. A. Rasskazova, “Modelling railway freight traffic using the methods of graph theory and combinatorial optimization”, Avtomat. i Telemekh., 2016, no. 11,  60–79  mathnet  elib; Autom. Remote Control, 77:11 (2016), 1928–1943  isi  elib  scopus 6
2015
5. A. V. Konygin, “On Cameron's question about the triviality in primitive permutation groups of the stabilizer of two points that is normal in the stabilizer of one of them”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  175–186  mathnet  mathscinet  elib 2
2013
6. A. V. Konygin, “On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  187–198  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S116–S127  isi  scopus 4
2010
7. A. V. Konygin, “On primitive permutation groups with a stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a power of sporadic simple group”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  159–167  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S65–S73  isi  scopus 4
2008
8. A. V. Konygin, “On primitive permutation groups”, Sib. Èlektron. Mat. Izv., 5 (2008),  387–406  mathnet  mathscinet 6
2007
9. A. V. Konygin, “On primitive permutation groups with nontrivial global stabilizers”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007),  61–64  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 261, suppl. 1 (2008), S113–S116  scopus 1
10. A. V. Konygin, “Sets with trivial global stabilizers for primitive permutation groups which are not almost simple”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  115–131  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 257, suppl. 1 (2007), S100–S117  scopus 1

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024