Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2008, Volume 5, Pages 387–406 (Mi semr114)  

This article is cited in 6 scientific papers (total in 6 papers)

Research papers

On primitive permutation groups

A. V. Konygin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (840 kB) Citations (6)
References:
Abstract: Let $G$ be a primitive permutation group on a finite set $X$, $x\in X,$ $y\in X\setminus\{y\}$ and $G_{xy}\unlhd G_x$. It is proved that, if $G$ is of type I, type III(a), type III(c) (of the O'Nan–Scott classification) or $G$ is of type II and $\operatorname{soc}(G)$ is not an exceptional group of Lie type or a sporadic simple group, then $G_{xy}=1$. In addition, it is proved that if $G$ is of type III(b) and $\operatorname{soc}(G)$ is not a direct product of exceptional groups of Lie type or sporadic simple groups, then $G_{xy}=1$.
Keywords: primitive permutation group, O'Nan–Scott classification.
Received September 18, 2008, published October 2, 2008
Bibliographic databases:
Document Type: Article
UDC: 512.542.7
MSC: 20B15
Language: Russian
Citation: A. V. Konygin, “On primitive permutation groups”, Sib. Èlektron. Mat. Izv., 5 (2008), 387–406
Citation in format AMSBIB
\Bibitem{Kon08}
\by A.~V.~Konygin
\paper On primitive permutation groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2008
\vol 5
\pages 387--406
\mathnet{http://mi.mathnet.ru/semr114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586645}
Linking options:
  • https://www.mathnet.ru/eng/semr114
  • https://www.mathnet.ru/eng/semr/v5/p387
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :69
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024