Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 187–198 (Mi timm976)  

This article is cited in 4 scientific papers (total in 4 papers)

On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them

A. V. Konygin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (225 kB) Citations (4)
References:
Abstract: Assume that $G$ is a primitive permutation group on a finite set $X$, $x\in X$, $y\in X\setminus\{x\}$, and $G_{x,y}\trianglelefteq G_x$. P. Cameron raised the question about the validity of the equality $G_{x,y}=1$ in this case. The author proved earlier that, if $\mathrm{soc}(G)$ is not a direct power of an exceptional group of Lie type, then $G_{x,y}=1$. In the present paper, we prove that, if $\mathrm{soc}(G)$ is a direct power of an exceptional group of Lie type distinct from $E_6(q)$, $^2E_6(q)$, $E_7(q)$ and $E_8(q)$, then $G_{x,y}=1$.
Keywords: primitive permutation group, regular suborbit.
Received: 10.01.2012
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 285, Issue 1, Pages S116–S127
DOI: https://doi.org/10.1134/S0081543814050125
Bibliographic databases:
Document Type: Article
UDC: 512.542.7
Language: Russian
Citation: A. V. Konygin, “On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 187–198; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S116–S127
Citation in format AMSBIB
\Bibitem{Kon13}
\by A.~V.~Konygin
\paper On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 187--198
\mathnet{http://mi.mathnet.ru/timm976}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3363311}
\elib{https://elibrary.ru/item.asp?id=20234985}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S116--S127
\crossref{https://doi.org/10.1134/S0081543814050125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338337200011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903291457}
Linking options:
  • https://www.mathnet.ru/eng/timm976
  • https://www.mathnet.ru/eng/timm/v19/i3/p187
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :99
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024