Abstract:
Let G be a primitive permutation group on a finite set X such that the global stabilizer of any subset of the set X in the group G is nontrivial. The description of G is obtained in the case when G is not almost simple.
Citation:
A. V. Konygin, “Sets with trivial global stabilizers for primitive permutation groups which are not almost simple”, Группы и графы, Trudy Inst. Mat. i Mekh. UrO RAN, 13, no. 1, 2007, 115–131; Proc. Steklov Inst. Math. (Suppl.), 257, suppl. 1 (2007), S100–S117
\Bibitem{Kon07}
\by A.~V.~Konygin
\paper Sets with trivial global stabilizers for primitive permutation groups which are not almost simple
\inbook Группы и графы
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2007
\vol 13
\issue 1
\pages 115--131
\mathnet{http://mi.mathnet.ru/timm76}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338243}
\elib{https://elibrary.ru/item.asp?id=12040757}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2007
\vol 257
\issue , suppl. 1
\pages S100--S117
\crossref{https://doi.org/10.1134/S0081543807050070}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547657385}
Linking options:
https://www.mathnet.ru/eng/timm76
https://www.mathnet.ru/eng/timm/v13/i1/p115
This publication is cited in the following 1 articles:
A. V. Konygin, “On primitive permutation groups with nontrivial global stabilizers”, Proc. Steklov Inst. Math. (Suppl.), 261, suppl. 1 (2008), S113–S116