|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
Yu. A. Chernyaev, “Conditional gradient method for optimization problems with a constraint in the form of the intersection of a convex smooth surface and a convex compact set”, Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023), 1100–1107 ; Comput. Math. Math. Phys., 63:7 (2023), 1191–1198 |
|
2022 |
2. |
Yu. A. Chernyaev, “Numerical algorithm for solving a class of optimization problems with a constraint in the form of a subset of points of a smooth surface”, Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022), 2018–2025 ; Comput. Math. Math. Phys., 62:12 (2022), 2033–2040 |
|
2021 |
3. |
Yu. A. Chernyaev, “Gradient projection method for a class of optimization problems with a constraint in the form of a subset of points of a smooth surface”, Zh. Vychisl. Mat. Mat. Fiz., 61:3 (2021), 391–399 ; Comput. Math. Math. Phys., 61:3 (2021), 368–375 |
2
|
|
2019 |
4. |
Yu. A. Chernyaev, “Numerical algorithm for minimizing a convex function on the intersection of a smooth surface and a convex compact set”, Zh. Vychisl. Mat. Mat. Fiz., 59:7 (2019), 1151–1157 ; Comput. Math. Math. Phys., 59:7 (2019), 1098–1104 |
1
|
5. |
Yu. A. Chernyaev, “Gradient projection method for optimization problems with a constraint in the form of the intersection of a smooth surface and a convex closed set”, Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019), 37–49 ; Comput. Math. Math. Phys., 59:1 (2019), 34–45 |
5
|
|
2018 |
6. |
V. I. Zabotin, Yu. A. Chernyaev, “Newton's method for minimizing a convex twice differentiable function on a preconvex set”, Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018), 340–345 ; Comput. Math. Math. Phys., 58:3 (2018), 322–327 |
3
|
|
2017 |
7. |
Yu. A. Chernyaev, “Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set”, Zh. Vychisl. Mat. Mat. Fiz., 57:10 (2017), 1631–1640 ; Comput. Math. Math. Phys., 57:10 (2017), 1607–1615 |
2
|
|
2016 |
8. |
Yu. A. Chernyaev, “Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1733–1749 ; Comput. Math. Math. Phys., 56:10 (2016), 1716–1731 |
7
|
9. |
Yu. A. Chernyaev, “Numerical algorithm for solving mathematical programming problems with a smooth surface as a constraint”, Zh. Vychisl. Mat. Mat. Fiz., 56:3 (2016), 387–393 ; Comput. Math. Math. Phys., 56:3 (2016), 376–381 |
4
|
|
2015 |
10. |
Yu. A. Chernyaev, “An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface”, Zh. Vychisl. Mat. Mat. Fiz., 55:9 (2015), 1493–1502 ; Comput. Math. Math. Phys., 55:9 (2015), 1451–1460 |
10
|
|
2012 |
11. |
Yu. A. Chernyaev, “Newton’s method for optimization problems with a convex smooth surface as a constraint”, Zh. Vychisl. Mat. Mat. Fiz., 52:2 (2012), 224–230 |
1
|
|
2010 |
12. |
T. F. Minnibaev, Yu. A. Chernyaev, “Iterative algorithm for mathematical programming problems with preconvex constraints”, Zh. Vychisl. Mat. Mat. Fiz., 50:5 (2010), 832–835 ; Comput. Math. Math. Phys., 50:5 (2010), 792–794 |
4
|
|
2009 |
13. |
Yu. A. Chernyaev, “An iterative method for minimizing a convex nonsmooth function on a convex smooth surface”, Zh. Vychisl. Mat. Mat. Fiz., 49:4 (2009), 611–615 ; Comput. Math. Math. Phys., 49:4 (2009), 589–593 |
2
|
|
2008 |
14. |
Yu. A. Chernyaev, “Generalization of Newton's method to the class of nonconvex mathematical programming problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 1, 78–82 ; Russian Math. (Iz. VUZ), 52:1 (2008), 72–75 |
4
|
15. |
Yu. A. Chernyaev, “Two methods for minimizing convex functions in a class of nonconvex sets”, Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008), 1802–1811 ; Comput. Math. Math. Phys., 48:10 (2008), 1768–1776 |
3
|
|
2006 |
16. |
Yu. A. Chernyaev, “An extension of the conditional gradient method to a class of nonconvex optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006), 576–582 ; Comput. Math. Math. Phys., 46:4 (2006), 548–553 |
4
|
|
2005 |
17. |
Yu. A. Chernyaev, “Convergence of the gradient projection method for a class of nonconvex mathematical programming problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 12, 76–79 ; Russian Math. (Iz. VUZ), 49:12 (2005), 71–74 |
6
|
|
2004 |
18. |
Yu. A. Chernyaev, “Two algorithms for solving a mathematical programming problem with preconvex constraints”, Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004), 1229–1233 ; Comput. Math. Math. Phys., 44:7 (2004), 1165–1169 |
3
|
19. |
V. I. Zabotin, Yu. A. Chernyaev, “Convergence of an iterative method for a programming problem, which is constrained by a convex smooth surface”, Zh. Vychisl. Mat. Mat. Fiz., 44:4 (2004), 609–612 ; Comput. Math. Math. Phys., 44:4 (2004), 575–578 |
5
|
|
2003 |
20. |
Yu. A. Chernyaev, “The conditional gradient method for optimization problems with pre-convex constrains”, Zh. Vychisl. Mat. Mat. Fiz., 43:12 (2003), 1910–1913 ; Comput. Math. Math. Phys., 43:12 (2003), 1837–1840 |
3
|
21. |
Yu. A. Chernyaev, “On a numerical algorithm for optimization problems with pre-convex constraints”, Zh. Vychisl. Mat. Mat. Fiz., 43:2 (2003), 169–175 ; Comput. Math. Math. Phys., 43:2 (2003), 162–167 |
7
|
|
2001 |
22. |
V. I. Zabotin, Yu. A. Chernyaev, “A generalization of the gradient projection method to extremal problems with preconvex constraints”, Zh. Vychisl. Mat. Mat. Fiz., 41:3 (2001), 367–373 ; Comput. Math. Math. Phys., 41:3 (2001), 340–346 |
16
|
|
Organisations |
|
|
|
|