Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 10, Pages 1733–1749
DOI: https://doi.org/10.7868/S0044466916100057
(Mi zvmmf10471)
 

This article is cited in 7 scientific papers (total in 7 papers)

Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set

Yu. A. Chernyaev

Kazan National Research Technical University, Kazan, Tatarstan, Russia
Full-text PDF (275 kB) Citations (7)
References:
Abstract: The gradient projection method and Newton's method are generalized to the case of nonconvex constraint sets representing the set-theoretic intersection of a spherical surface with a convex closed set. Necessary extremum conditions are examined, and the convergence of the methods is analyzed.
Key words: spherical surface, convex closed set, gradient projection method, Newton's method, necessary conditions for a local minimum, convergence of an algorithm.
Received: 21.10.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 10, Pages 1716–1731
DOI: https://doi.org/10.1134/S0965542516100055
Bibliographic databases:
Document Type: Article
UDC: 519.658
Language: Russian
Citation: Yu. A. Chernyaev, “Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1733–1749; Comput. Math. Math. Phys., 56:10 (2016), 1716–1731
Citation in format AMSBIB
\Bibitem{Che16}
\by Yu.~A.~Chernyaev
\paper Convergence of the gradient projection method and Newton's method as applied to optimization problems constrained by intersection of a spherical surface and a convex closed set
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 10
\pages 1733--1749
\mathnet{http://mi.mathnet.ru/zvmmf10471}
\crossref{https://doi.org/10.7868/S0044466916100057}
\elib{https://elibrary.ru/item.asp?id=26665205}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 10
\pages 1716--1731
\crossref{https://doi.org/10.1134/S0965542516100055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386769200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992396669}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10471
  • https://www.mathnet.ru/eng/zvmmf/v56/i10/p1733
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024