Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 3, Pages 391–399
DOI: https://doi.org/10.31857/S004446692102006X
(Mi zvmmf11208)
 

This article is cited in 2 scientific papers (total in 2 papers)

Optimal control

Gradient projection method for a class of optimization problems with a constraint in the form of a subset of points of a smooth surface

Yu. A. Chernyaev

Kazan National Research Technical University named after A. N. Tupolev
Citations (2)
References:
Abstract: The gradient projection method is generalized to nonconvex sets of constraints representing the set-theoretic difference of a set of points of a smooth surface and the union of a finite number of convex open sets. Necessary optimality conditions are examined, and the convergence of the method is analyzed.
Key words: smooth surface, convex open set, gradient projection method, necessary conditions for a local minimum.
Received: 24.03.2020
Revised: 24.03.2020
Accepted: 16.09.2020
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 3, Pages 368–375
DOI: https://doi.org/10.1134/S0965542521020068
Bibliographic databases:
Document Type: Article
UDC: 519.658
Language: Russian
Citation: Yu. A. Chernyaev, “Gradient projection method for a class of optimization problems with a constraint in the form of a subset of points of a smooth surface”, Zh. Vychisl. Mat. Mat. Fiz., 61:3 (2021), 391–399; Comput. Math. Math. Phys., 61:3 (2021), 368–375
Citation in format AMSBIB
\Bibitem{Che21}
\by Yu.~A.~Chernyaev
\paper Gradient projection method for a class of optimization problems with a constraint in the form of a subset of points of a smooth surface
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 3
\pages 391--399
\mathnet{http://mi.mathnet.ru/zvmmf11208}
\crossref{https://doi.org/10.31857/S004446692102006X}
\elib{https://elibrary.ru/item.asp?id=44732179}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 3
\pages 368--375
\crossref{https://doi.org/10.1134/S0965542521020068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000645661000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105002770}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11208
  • https://www.mathnet.ru/eng/zvmmf/v61/i3/p391
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:159
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024