Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 9, Pages 1493–1502
DOI: https://doi.org/10.7868/S0044466915090082
(Mi zvmmf10262)
 

This article is cited in 10 scientific papers (total in 10 papers)

An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface

Yu. A. Chernyaev

Kazan Typolev National Research Technical University, ul. Karla Marksa 10, Kazan, 420111, Tatarstan, Russia
References:
Abstract: The gradient projection method and Newton’s method are extended to the case where the constraints are nonconvex and are represented by a smooth surface. Necessary extremum conditions and the convergence of the methods are examined.
Key words: smooth surface, gradient projection method, Newton's method, projection on a nonconvex set, necessary condition for a local minimum, convergence of an algorithm.
Received: 22.04.2014
Revised: 17.12.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 9, Pages 1451–1460
DOI: https://doi.org/10.1134/S0965542515090079
Bibliographic databases:
Document Type: Article
UDC: 519.658
Language: Russian
Citation: Yu. A. Chernyaev, “An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface”, Zh. Vychisl. Mat. Mat. Fiz., 55:9 (2015), 1493–1502; Comput. Math. Math. Phys., 55:9 (2015), 1451–1460
Citation in format AMSBIB
\Bibitem{Che15}
\by Yu.~A.~Chernyaev
\paper An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 9
\pages 1493--1502
\mathnet{http://mi.mathnet.ru/zvmmf10262}
\crossref{https://doi.org/10.7868/S0044466915090082}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3396524}
\elib{https://elibrary.ru/item.asp?id=24045306}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 9
\pages 1451--1460
\crossref{https://doi.org/10.1134/S0965542515090079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361438500004}
\elib{https://elibrary.ru/item.asp?id=24949928}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941954735}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10262
  • https://www.mathnet.ru/eng/zvmmf/v55/i9/p1493
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:468
    Full-text PDF :183
    References:77
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024