|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
Yu. Kh. Eshkabilov, Sh. D. Nodirov, “Positive fixed points of Hammerstein integral operators with degenerate kernel”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 166:3 (2024), 437–449 |
|
2022 |
2. |
Yu. Kh. Eshkabilov, D. J. Kulturaev, “On discrete spectrum of one two-particle lattice Hamiltonian”, Ufimsk. Mat. Zh., 14:2 (2022), 101–111 ; Ufa Math. J., 14:2 (2022), 97–107 |
3. |
D. J. Kulturayev, Yu. Kh. Eshkabilov, “Spectral properties of self-adjoint partially integral operators with non-degenerate kernels”, Vladikavkaz. Mat. Zh., 24:4 (2022), 91–104 |
|
2021 |
4. |
Yu. Kh. Eshkabilov, R. R. Kucharov, “Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$”, Vladikavkaz. Mat. Zh., 23:3 (2021), 80–90 |
1
|
|
2020 |
5. |
G. P. Arzikulov, Yu. Kh. Eshkabilov, “About the spectral properties of one three-partial model operator”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 5, 3–10 ; Russian Math. (Iz. VUZ), 64:5 (2020), 1–7 |
6. |
Yu. Kh. Eshkabilov, G. I. Botirov, F. H. Haydarov, “Phase transitions for models with a continuum set of spin values on
a Bethe lattice”, TMF, 205:1 (2020), 146–155 ; Theoret. and Math. Phys., 205:1 (2020), 1372–1380 |
|
2019 |
7. |
Yusup Kh. Eshkabilov, Shohruh D. Nodirov, “Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and Gibbs measures”, J. Sib. Fed. Univ. Math. Phys., 12:6 (2019), 663–673 |
2
|
|
2017 |
8. |
Yu. Kh. Eshkabilov, F. H. Haydarov, “Lyapunov operator $\mathcal{L}$ with degenerate kernel and Gibbs measures”, Nanosystems: Physics, Chemistry, Mathematics, 8:5 (2017), 553–558 |
|
2016 |
9. |
Yu. Kh. Eshkabilov, Sh. P. Bobonazarov, R. I. Teshaboev, “Translation-invariant Gibbs measures for a model with logarithmic potential on a Cayley tree”, Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016), 893–899 |
10. |
Yu. Kh. Èshkabilov, “Spectrum of a model three-particle Schrödinger operator”, TMF, 186:2 (2016), 311–322 ; Theoret. and Math. Phys., 186:2 (2016), 268–279 |
|
2015 |
11. |
Yu. Kh. Eshkabilov, F. H. Haydarov, “On positive solutions of the homogeneous Hammerstein integral equation”, Nanosystems: Physics, Chemistry, Mathematics, 6:5 (2015), 618–627 |
|
2014 |
12. |
G. P. Arzikulov, Yu. Kh. Eshkabilov, “On the essential and the discrete spectra of a Fredholm type partial integral operator”, Mat. Tr., 17:2 (2014), 23–40 ; Siberian Adv. Math., 25:4 (2015), 231–242 |
3
|
13. |
R. R. Kucharov, Yu. Kh. Eshkabilov, “On the number of negative eigenvalues of a partial integral operator”, Mat. Tr., 17:1 (2014), 128–144 ; Siberian Adv. Math., 25:3 (2015), 179–190 |
1
|
|
2013 |
14. |
Yu. Kh. Èshkabilov, R. R. Kucharov, “Efimov's effect for partial integral operators of fredholm type”, Nanosystems: Physics, Chemistry, Mathematics, 4:4 (2013), 529–537 |
|
2012 |
15. |
Yu. Kh. Eshkabilov, “On the discrete spectrum of partial integral operators”, Mat. Tr., 15:2 (2012), 194–203 ; Siberian Adv. Math., 23:4 (2013), 227–233 |
3
|
16. |
Yu. Kh. Èshkabilov, “On infinite number of negative eigenvalues of the Friedrichs model”, Nanosystems: Physics, Chemistry, Mathematics, 3:6 (2012), 16–24 |
17. |
Yu. Kh. Eshkabilov, R. R. Kucharov, “Essential and discrete spectra of the three-particle Schrödinger operator on a lattice”, TMF, 170:3 (2012), 409–422 ; Theoret. and Math. Phys., 170:3 (2012), 341–353 |
6
|
|
2011 |
18. |
Yu. Kh. Eshkabilov, “On infinity of the discrete spectrum of operators in the Friedrichs model”, Mat. Tr., 14:1 (2011), 195–211 ; Siberian Adv. Math., 22:1 (2012), 1–12 |
9
|
|
2010 |
19. |
Yu. Kh. Èshkabilov, “The Efimov effect for a model “three-particle” discrete Schrödinger operator”, TMF, 164:1 (2010), 78–87 ; Theoret. and Math. Phys., 164:1 (2010), 896–904 |
9
|
|
2008 |
20. |
Yu. Kh. Eshkabilov, “Essential and discrete spectra of partially integral operators”, Mat. Tr., 11:2 (2008), 187–203 ; Siberian Adv. Math., 19:4 (2009), 233–244 |
6
|
21. |
Yu. Kh. Eshkabilov, “Partially integral operators with bounded kernels”, Mat. Tr., 11:1 (2008), 192–207 ; Siberian Adv. Math., 19:3 (2009), 151–161 |
5
|
|
2006 |
22. |
Yu. Kh. Èshkabilov, “A discrete "three-particle" Schrödinger operator in the Hubbard model”, TMF, 149:2 (2006), 228–243 ; Theoret. and Math. Phys., 149:2 (2006), 1497–1511 |
19
|
23. |
Yu. Kh. Èshkabilov, “On the spectral properties of operators in the Friedrichs model with a noncompact kernel in the space of functions of two variables”, Vladikavkaz. Mat. Zh., 8:3 (2006), 53–67 |
|
Organisations |
|
|
|
|