Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2008, Volume 11, Number 2, Pages 187–203 (Mi mt130)  

This article is cited in 6 scientific papers (total in 6 papers)

Essential and discrete spectra of partially integral operators

Yu. Kh. Eshkabilov

National University of Uzbekistan named after M. Ulugbek, Faculty of Mathematics and Mechanics
Full-text PDF (225 kB) Citations (6)
References:
Abstract: Let $\Omega_1,\Omega_2\subset\mathbb R^\nu$ be compact sets. In the Hilbert space $L_2(\Omega_1\times\Omega_2)$, we study the spectral properties of selfadjoint partially integral operators $T_1$, $T_2$, and $T_1+T_2$, with
\begin{align*} (T_1 f)(x,y)&=\int_{\Omega_1}k_1(x,s,y)f(s,y)d\mu(s), \\ (T_2 f)(x,y)&=\int_{\Omega_2}k_2(x,t,y)f(x,t)d\mu(t), \end{align*}
whose kernels depend on three variables. We prove a theorem describing properties of the essential and discrete spectra of the partially integral operator $T_1+T_2$.
Key words: compact integral operator, partially integral operator, Fredholm determinant and minor, spectrum, essential and discrete spectra of selfadjoint operators.
Received: 15.04.2008
English version:
Siberian Advances in Mathematics, 2009, Volume 19, Issue 4, Pages 233–244
DOI: https://doi.org/10.3103/S1055134409040026
Bibliographic databases:
UDC: 517.984.53
Language: Russian
Citation: Yu. Kh. Eshkabilov, “Essential and discrete spectra of partially integral operators”, Mat. Tr., 11:2 (2008), 187–203; Siberian Adv. Math., 19:4 (2009), 233–244
Citation in format AMSBIB
\Bibitem{Esh08}
\by Yu.~Kh.~Eshkabilov
\paper Essential and discrete spectra of partially integral operators
\jour Mat. Tr.
\yr 2008
\vol 11
\issue 2
\pages 187--203
\mathnet{http://mi.mathnet.ru/mt130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2500130}
\transl
\jour Siberian Adv. Math.
\yr 2009
\vol 19
\issue 4
\pages 233--244
\crossref{https://doi.org/10.3103/S1055134409040026}
Linking options:
  • https://www.mathnet.ru/eng/mt130
  • https://www.mathnet.ru/eng/mt/v11/i2/p187
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024