Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 149, Number 2, Pages 228–243
DOI: https://doi.org/10.4213/tmf4229
(Mi tmf4229)
 

This article is cited in 19 scientific papers (total in 19 papers)

A discrete "three-particle" Schrödinger operator in the Hubbard model

Yu. Kh. Èshkabilov

National University of Uzbekistan named after M. Ulugbek
References:
Abstract: In the space $L_2(T^ \nu \times T^\nu)$, where $T^\nu$ is a $\nu$-dimensional torus, we study the spectral properties of the "three-particle" discrete Schrödinger operator $\widehat H=H_0+H_1+H_2$, where $H_0$ is the operator of multiplication by a function and $H_1$ and $H_2$ are partial integral operators. We prove several theorems concerning the essential spectrum of $\widehat H$. We study the discrete and essential spectra of the Hamiltonians $H^{\mathrm{t}}$ and $\mathbf{h}$ arising in the Hubbard model on the three-dimensional lattice.
Keywords: discrete Schrödinger operator, Hubbard model, discrete spectrum of a discrete operator, essential spectrum of a discrete operator.
Received: 02.12.2003
Revised: 10.04.2006
English version:
Theoretical and Mathematical Physics, 2006, Volume 149, Issue 2, Pages 1497–1511
DOI: https://doi.org/10.1007/s11232-006-0133-2
Bibliographic databases:
Language: Russian
Citation: Yu. Kh. Èshkabilov, “A discrete "three-particle" Schrödinger operator in the Hubbard model”, TMF, 149:2 (2006), 228–243; Theoret. and Math. Phys., 149:2 (2006), 1497–1511
Citation in format AMSBIB
\Bibitem{Esh06}
\by Yu.~Kh.~\`Eshkabilov
\paper A~discrete ``three-particle" Schr\"odinger operator in the~Hubbard model
\jour TMF
\yr 2006
\vol 149
\issue 2
\pages 228--243
\mathnet{http://mi.mathnet.ru/tmf4229}
\crossref{https://doi.org/10.4213/tmf4229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2302862}
\zmath{https://zbmath.org/?q=an:1177.82075}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...149.1497E}
\elib{https://elibrary.ru/item.asp?id=9296932}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 149
\issue 2
\pages 1497--1511
\crossref{https://doi.org/10.1007/s11232-006-0133-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000242873600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751276290}
Linking options:
  • https://www.mathnet.ru/eng/tmf4229
  • https://doi.org/10.4213/tmf4229
  • https://www.mathnet.ru/eng/tmf/v149/i2/p228
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024