Abstract:
In the space $L_2(T^ \nu \times T^\nu)$, where $T^\nu$ is a $\nu$-dimensional
torus, we study the spectral properties of the "three-particle" discrete
Schrödinger operator $\widehat H=H_0+H_1+H_2$, where $H_0$ is the operator of
multiplication by a function and $H_1$ and $H_2$ are partial integral
operators. We prove several theorems concerning the essential spectrum of
$\widehat H$. We study the discrete and essential spectra of the Hamiltonians
$H^{\mathrm{t}}$ and $\mathbf{h}$
arising in the Hubbard model on the three-dimensional
lattice.
Keywords:
discrete Schrödinger operator, Hubbard model, discrete spectrum of a discrete operator, essential spectrum of a discrete operator.
This publication is cited in the following 19 articles:
D. Zh. Kulturaev, Yu. Kh. Eshkabilov, “On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel”, Sib Math J, 65:2 (2024), 475
Yu. Kh. Eshkabilov, D. J. Kulturaev, “On discrete spectrum of one two-particle lattice Hamiltonian”, Ufa Math. J., 14:2 (2022), 97–107
Kucharov R.R., Khamraeva R.R., “Non-Compact Perturbations of the Spectrum of Multipliers Given With Functions”, Nanosyst.-Phys. Chem. Math., 12:2 (2021), 135–141
Yu. Kh. Eshkabilov, R. R. Kucharov, “Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$”, Vladikavk. matem. zhurn., 23:3 (2021), 80–90
G. P. Arzikulov, Yu. Kh. Eshkabilov, “About the spectral properties of one three-partial model operator”, Russian Math. (Iz. VUZ), 64:5 (2020), 1–7
Yu. Kh. Èshkabilov, “Spectrum of a model three-particle Schrödinger operator”, Theoret. and Math. Phys., 186:2 (2016), 268–279
Kucharov R., Eshkabilov Yu., “Fredholm partial integral equations of second type with degenerate kernel”, Algebra, Analysis and Quantum Probability, Journal of Physics Conference Series, 697, eds. Ayupov S., Chilin V., Ganikhodjaev N., Mukhamedov F., Rakhimov I., IOP Publishing Ltd, 2016, 012021
R. R. Kucharov, Yu. Kh. Eshkabilov, “On the number of negative eigenvalues of a partial integral operator”, Siberian Adv. Math., 25:3 (2015), 179–190
G. P. Arzikulov, Yu. Kh. Eshkabilov, “On the essential and the discrete spectra of a Fredholm type partial integral operator”, Siberian Adv. Math., 25:4 (2015), 231–242
Yu. Kh. Eshkabilov, R. R. Kucharov, “Essential and discrete spectra of the three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 170:3 (2012), 341–353
Yu. Kh. Eshkabilov, “On the discrete spectrum of partial integral operators”, Siberian Adv. Math., 23:4 (2013), 227–233
T. H. Rasulov, “Essential spectrum of a model operator associated with a three-particle system on a lattice”, Theoret. and Math. Phys., 166:1 (2011), 81–93
Yu. Kh. Eshkabilov, “On infinity of the discrete spectrum of operators in the Friedrichs model”, Siberian Adv. Math., 22:1 (2012), 1–12
T. Kh. Rasulov, “O suschestvennom spektre odnogo modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 3(24) (2011), 42–51
Yu. Kh. Èshkabilov, “The Efimov effect for a model “three-particle” discrete Schrödinger operator”, Theoret. and Math. Phys., 164:1 (2010), 896–904
Yu. Kh. Eshkabilov, “Partially integral operators with bounded kernels”, Siberian Adv. Math., 19:3 (2009), 151–161
Yu. Kh. Eshkabilov, “Essential and discrete spectra of partially integral operators”, Siberian Adv. Math., 19:4 (2009), 233–244
Eshkabilov YK, “Spectra of partial integral operators with a kernel of three variables”, Central European Journal of Mathematics, 6:1 (2008), 149–157