Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 149, Number 2, Pages 228–243
DOI: https://doi.org/10.4213/tmf4229
(Mi tmf4229)
 

This article is cited in 19 scientific papers (total in 19 papers)

A discrete "three-particle" Schrödinger operator in the Hubbard model

Yu. Kh. Èshkabilov

National University of Uzbekistan named after M. Ulugbek
References:
Abstract: In the space $L_2(T^ \nu \times T^\nu)$, where $T^\nu$ is a $\nu$-dimensional torus, we study the spectral properties of the "three-particle" discrete Schrödinger operator $\widehat H=H_0+H_1+H_2$, where $H_0$ is the operator of multiplication by a function and $H_1$ and $H_2$ are partial integral operators. We prove several theorems concerning the essential spectrum of $\widehat H$. We study the discrete and essential spectra of the Hamiltonians $H^{\mathrm{t}}$ and $\mathbf{h}$ arising in the Hubbard model on the three-dimensional lattice.
Keywords: discrete Schrödinger operator, Hubbard model, discrete spectrum of a discrete operator, essential spectrum of a discrete operator.
Received: 02.12.2003
Revised: 10.04.2006
English version:
Theoretical and Mathematical Physics, 2006, Volume 149, Issue 2, Pages 1497–1511
DOI: https://doi.org/10.1007/s11232-006-0133-2
Bibliographic databases:
Language: Russian
Citation: Yu. Kh. Èshkabilov, “A discrete "three-particle" Schrödinger operator in the Hubbard model”, TMF, 149:2 (2006), 228–243; Theoret. and Math. Phys., 149:2 (2006), 1497–1511
Citation in format AMSBIB
\Bibitem{Esh06}
\by Yu.~Kh.~\`Eshkabilov
\paper A~discrete ``three-particle" Schr\"odinger operator in the~Hubbard model
\jour TMF
\yr 2006
\vol 149
\issue 2
\pages 228--243
\mathnet{http://mi.mathnet.ru/tmf4229}
\crossref{https://doi.org/10.4213/tmf4229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2302862}
\zmath{https://zbmath.org/?q=an:1177.82075}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...149.1497E}
\elib{https://elibrary.ru/item.asp?id=9296932}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 149
\issue 2
\pages 1497--1511
\crossref{https://doi.org/10.1007/s11232-006-0133-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000242873600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751276290}
Linking options:
  • https://www.mathnet.ru/eng/tmf4229
  • https://doi.org/10.4213/tmf4229
  • https://www.mathnet.ru/eng/tmf/v149/i2/p228
  • This publication is cited in the following 19 articles:
    1. D. Zh. Kulturaev, Yu. Kh. Eshkabilov, “On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel”, Sib Math J, 65:2 (2024), 475  crossref
    2. D. Zh. Kulturaev, Yu. Kh. Eshkabilov, “O spektralnykh svoistvakh samosopryazhennykh chastichno integralnykh operatorov s nevyrozhdennymi yadrami”, Vladikavk. matem. zhurn., 24:4 (2022), 91–104  mathnet  crossref  mathscinet
    3. Yu. Kh. Eshkabilov, D. J. Kulturaev, “On discrete spectrum of one two-particle lattice Hamiltonian”, Ufa Math. J., 14:2 (2022), 97–107  mathnet  crossref
    4. Kucharov R.R., Khamraeva R.R., “Non-Compact Perturbations of the Spectrum of Multipliers Given With Functions”, Nanosyst.-Phys. Chem. Math., 12:2 (2021), 135–141  crossref  isi
    5. Yu. Kh. Eshkabilov, R. R. Kucharov, “Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$”, Vladikavk. matem. zhurn., 23:3 (2021), 80–90  mathnet  crossref
    6. G. P. Arzikulov, Yu. Kh. Eshkabilov, “About the spectral properties of one three-partial model operator”, Russian Math. (Iz. VUZ), 64:5 (2020), 1–7  mathnet  crossref  crossref  isi
    7. Yu. Kh. Èshkabilov, “Spectrum of a model three-particle Schrödinger operator”, Theoret. and Math. Phys., 186:2 (2016), 268–279  mathnet  crossref  crossref  mathscinet  isi  elib
    8. Kucharov R., Eshkabilov Yu., “Fredholm partial integral equations of second type with degenerate kernel”, Algebra, Analysis and Quantum Probability, Journal of Physics Conference Series, 697, eds. Ayupov S., Chilin V., Ganikhodjaev N., Mukhamedov F., Rakhimov I., IOP Publishing Ltd, 2016, 012021  crossref  isi  scopus
    9. R. R. Kucharov, Yu. Kh. Eshkabilov, “On the number of negative eigenvalues of a partial integral operator”, Siberian Adv. Math., 25:3 (2015), 179–190  mathnet  crossref  mathscinet
    10. G. P. Arzikulov, Yu. Kh. Eshkabilov, “On the essential and the discrete spectra of a Fredholm type partial integral operator”, Siberian Adv. Math., 25:4 (2015), 231–242  mathnet  crossref  mathscinet
    11. Yu. Kh. Eshkabilov, R. R. Kucharov, “Essential and discrete spectra of the three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 170:3 (2012), 341–353  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    12. Yu. Kh. Eshkabilov, “On the discrete spectrum of partial integral operators”, Siberian Adv. Math., 23:4 (2013), 227–233  mathnet  crossref  mathscinet  elib
    13. T. H. Rasulov, “Essential spectrum of a model operator associated with a three-particle system on a lattice”, Theoret. and Math. Phys., 166:1 (2011), 81–93  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    14. Yu. Kh. Eshkabilov, “On infinity of the discrete spectrum of operators in the Friedrichs model”, Siberian Adv. Math., 22:1 (2012), 1–12  mathnet  crossref  mathscinet  elib
    15. T. Kh. Rasulov, “O suschestvennom spektre odnogo modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 3(24) (2011), 42–51  mathnet  crossref
    16. Yu. Kh. Èshkabilov, “The Efimov effect for a model “three-particle” discrete Schrödinger operator”, Theoret. and Math. Phys., 164:1 (2010), 896–904  mathnet  crossref  crossref  adsnasa  isi
    17. Yu. Kh. Eshkabilov, “Partially integral operators with bounded kernels”, Siberian Adv. Math., 19:3 (2009), 151–161  mathnet  crossref  mathscinet
    18. Yu. Kh. Eshkabilov, “Essential and discrete spectra of partially integral operators”, Siberian Adv. Math., 19:4 (2009), 233–244  mathnet  crossref  mathscinet
    19. Eshkabilov YK, “Spectra of partial integral operators with a kernel of three variables”, Central European Journal of Mathematics, 6:1 (2008), 149–157  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:634
    Full-text PDF :254
    References:54
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025