Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2011, Volume 14, Number 1, Pages 195–211 (Mi mt212)  

This article is cited in 9 scientific papers (total in 9 papers)

On infinity of the discrete spectrum of operators in the Friedrichs model

Yu. Kh. Eshkabilov

National University of Uzbekistan, Tashkent, Uzbekistan
Full-text PDF (236 kB) Citations (9)
References:
Abstract: The discrete spectrumof selfadjoint operators in the Friedrichs model is studied. Necessary and sufficient conditions of existence of infinitely many eigenvalues in the Friedrichs model are presented. A discrete spectrum of a model three-particle discrete Schrödinger operator is described.
Key words: Friedrichs model, spectrum, essential spectrum, discrete spectrum.
Received: 30.10.2009
English version:
Siberian Advances in Mathematics, 2012, Volume 22, Issue 1, Pages 1–12
DOI: https://doi.org/10.3103/S1055134412010014
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: Yu. Kh. Eshkabilov, “On infinity of the discrete spectrum of operators in the Friedrichs model”, Mat. Tr., 14:1 (2011), 195–211; Siberian Adv. Math., 22:1 (2012), 1–12
Citation in format AMSBIB
\Bibitem{Esh11}
\by Yu.~Kh.~Eshkabilov
\paper On infinity of the discrete spectrum of operators in the Friedrichs model
\jour Mat. Tr.
\yr 2011
\vol 14
\issue 1
\pages 195--211
\mathnet{http://mi.mathnet.ru/mt212}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2858663}
\elib{https://elibrary.ru/item.asp?id=16441661}
\transl
\jour Siberian Adv. Math.
\yr 2012
\vol 22
\issue 1
\pages 1--12
\crossref{https://doi.org/10.3103/S1055134412010014}
Linking options:
  • https://www.mathnet.ru/eng/mt212
  • https://www.mathnet.ru/eng/mt/v14/i1/p195
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:552
    Full-text PDF :129
    References:78
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024